1887

Abstract

Sulfur makes up 1 % of the dry mass of bacteria, and it is an abundant element (0.1 %) on earth. Sulfur in the environment is, however, mostly in oxidized forms and inaccessible to living organisms. At present, the entire assimilation pathway of external sulfur to sulfur-containing biomolecules and its regulation in remain poorly understood, except for the metabolic pathway of cysteine synthesis, the first-step metabolite of sulfur assembly. During the search for regulation targets of uncharacterized transcription factors by Genomic SELEX screening, we found that the hitherto uncharacterized YdcN regulates a set of genes involved in the utilization of sulfur, including the generation of sulfate and its reduction, the synthesis of cysteine, the synthesis of enzymes containing Fe–S as cofactors, and the modification of tRNA with use of sulfur-containing substrates. Taking these findings together, we propose renaming YdcN as SutR (regulator of sulfur utilization).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083550-0
2015-01-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/99.html?itemId=/content/journal/micro/10.1099/mic.0.083550-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:0008 [View Article][PubMed]
    [Google Scholar]
  2. Burman J. D., Harris R. L., Hauton K. A., Lawson D. M., Sawers R. G. 2004; The iron-sulfur cluster in the L-serine dehydratase TdcG from Escherichia coli is required for enzyme activity. FEBS Lett 576:442–444 [View Article][PubMed]
    [Google Scholar]
  3. Burton N. A., Johnson M. D., Antczak P., Robinson A., Lund P. A. 2010; Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics. J Mol Biol 401:726–742 [View Article][PubMed]
    [Google Scholar]
  4. Casadaban M. J. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555 [View Article][PubMed]
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  6. Desai K. K., Miller B. G. 2010; Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate. Proc Natl Acad Sci U S A 107:17968–17973 [View Article][PubMed]
    [Google Scholar]
  7. El Yacoubi B., Bailly M., de Crécy-Lagard V. 2012; Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 46:69–95 [View Article][PubMed]
    [Google Scholar]
  8. Fleischhacker A. S., Stubna A., Hsueh K.-L., Guo Y., Teter S. J., Rose J. C., Brunold T. C., Markley J. L., Münck E., Kiley P. J. 2012; Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 51:4453–4462 [View Article][PubMed]
    [Google Scholar]
  9. Fujita N., Ishihama A. 1996; Reconstitution of RNA polymerase. Methods Enzymol 273:121–130 [View Article][PubMed]
    [Google Scholar]
  10. Golovina A. Y., Sergiev P. V., Golovin A. V., Serebryakova M. V., Demina I., Govorun V. M., Dontsova O. A. 2009; The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC). RNA 15:1134–1141 [View Article][PubMed]
    [Google Scholar]
  11. Guymer D., Maillard J., Sargent F. 2009; A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. Arch Microbiol 191:519–528 [View Article][PubMed]
    [Google Scholar]
  12. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  13. Hidese R., Mihara H., Kurihara T., Esaki N. 2014; Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis. J Bacteriol 196:1238–1249 [View Article][PubMed]
    [Google Scholar]
  14. Hindson V. J., Moody P. C., Rowe A. J., Shaw W. V. 2000; Serine acetyltransferase from Escherichia coli is a dimer of trimers. J Biol Chem 275:461–466 [View Article][PubMed]
    [Google Scholar]
  15. Igarashi K., Ishihama A. 1991; Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 65:1015–1022 [View Article][PubMed]
    [Google Scholar]
  16. Ishihama A. 2000; Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518 [View Article][PubMed]
    [Google Scholar]
  17. Ishihama A. 2009; The nucleoid: an overview. In EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Boek A., Curtiss R. III, Kaper J. B., Karp P. D., Neidhardt F. C., Nystrom T., Slauch J. M., Squires C. L., Ussery D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Ishihama A. 2010; Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 34:628–645[PubMed]
    [Google Scholar]
  19. Ishihama A. 2012; Prokaryotic genome regulation: a revolutionary paradigm. Proc Jpn Acad, Ser B, Phys Biol Sci 88:485–508 [View Article][PubMed]
    [Google Scholar]
  20. Ishihama A., Kori A., Koshio E., Yamada K., Maeda H., Shimada T., Makinoshima H., Iwata A., Fujita N. 2014; Intracellular Concentrations of Transcription Factors in Escherichia coli: 65 species with known regulatory functions. J Bacteriol 196:2718–2727 [View Article][PubMed]
    [Google Scholar]
  21. Jishage M., Ishihama A. 1997; Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 179:959–963[PubMed]
    [Google Scholar]
  22. Kambampati R., Lauhon C. T. 2000; Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J Biol Chem 275:10727–10730 [View Article][PubMed]
    [Google Scholar]
  23. Kertesz M. A. 2000; Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24:135–175[PubMed]
    [Google Scholar]
  24. Keseler I. M., Mackie A., Peralta-Gil M., Santos-Zavaleta A., Gama-Castro S., Bonavides-Martínez C., Fulcher C., Huerta A. M., Kothari A. & other authors ( 2013; EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41:Database issueD605–D612 [View Article][PubMed]
    [Google Scholar]
  25. Kredich N. M., Tomkins G. M. 1966; The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium . J Biol Chem 241:4955–4965[PubMed]
    [Google Scholar]
  26. Kurata T., Katayama A., Hiramatsu M., Kiguchi Y., Takeuchi M., Watanabe T., Ogasawara H., Ishihama A., Yamamoto K. 2013; Identification of the set of genes, including non-annotated morA, under the direct control of ModE in Escherichia coli . J Bacteriol 195:4496–4505[PubMed] [CrossRef]
    [Google Scholar]
  27. Lanois A., Jubelin G., Givaudan A. 2008; FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus . Mol Microbiol 68:516–533 [View Article][PubMed]
    [Google Scholar]
  28. Lubitz S. P., Weiner J. H. 2003; The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys 418:205–216 [View Article][PubMed]
    [Google Scholar]
  29. Miller J. F. 1992 A short course in bacterial genetics Cold Spring Harbour, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  30. Mueller E. G., Buck C. J., Palenchar P. M., Barnhart L. E., Paulson J. L. 1998; Identification of a gene involved in the generation of 4-thiouridine in tRNA. Nucleic Acids Res 26:2606–2610 [View Article][PubMed]
    [Google Scholar]
  31. Nakano M., Ogasawara H., Shimada T., Yamamoto K., Ishihama A. 2014; Involvement of cAMP-CRP in transcription activation and repression of the pck gene encoding PEP carboxykinase, the key enzyme of gluconeogenesis. FEMS Microbiol Lett 355:93–99 [View Article][PubMed]
    [Google Scholar]
  32. Neumann M., Mittelstädt G., Iobbi-Nivol C., Saggu M., Lendzian F., Hildebrandt P., Leimkühler S. 2009; A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli . FEBS J 276:2762–2774 [View Article][PubMed]
    [Google Scholar]
  33. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A. 2010; Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 156:2470–2483 [View Article][PubMed]
    [Google Scholar]
  34. Ogasawara H., Yamamoto K., Ishihama A. 2011Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis J Bacteriol 193:2587–2597 [View Article][PubMed]
    [Google Scholar]
  35. Pesavento C., Hengge R. 2012; The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity. Nucleic Acids Res 40:4783–4793 [View Article][PubMed]
    [Google Scholar]
  36. Riley M., Abe T., Arnaud M. B., Berlyn M. K. B., Blattner F. R., Chaudhuri R. R., Glasner J. D., Horiuchi T., Keseler I. M. & other authors ( 2006; Escherichia coli K-12: a cooperatively developed annotation snapshot–2005. Nucleic Acids Res 34:1–9 [View Article][PubMed]
    [Google Scholar]
  37. Rivetti C., Guthold M., Bustamante C. 1999; Wrapping of DNA around the E.coli RNA polymerase open promoter complex. EMBO J 18:4464–4475 [View Article][PubMed]
    [Google Scholar]
  38. Roche B., Aussel L., Ezraty B., Mandin P., Py B., Barras F. 2013; Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827:455–469 [View Article][PubMed]
    [Google Scholar]
  39. Rossi E., Motta S., Mauri P., Landini P. 2014; Sulfate assimilation pathway intermediate phosphoadenosine 59-phosphosulfate acts as a signal molecule affecting production of curli fibres in Escherichia coli . Microbiology 160:1832–1844 [View Article][PubMed]
    [Google Scholar]
  40. Ryals J., Hsu R. Y., Lipsett M. N., Bremer H. 1982; Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J Bacteriol 151:899–904[PubMed]
    [Google Scholar]
  41. Sambrook J., Russell D. W. 2001) Molecular cloning Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Segel I. H., Renosto F., Seubert P. A. 1987; Sulfate-activating enzymes. Methods Enzymol 143:334–349 [View Article][PubMed]
    [Google Scholar]
  43. Shimada K., Ogasawara H., Yamada K., Shimura M., Kori A., Shimada T., Yamanaka Y., Yamamoto K., Ishihama A. 2013; Screening of promoter-specific transcription factors: multiple regulators for the sdiA gene involved in cell division control and quorum sensing. Microbiology 159:2501–2512 [View Article][PubMed]
    [Google Scholar]
  44. Shimada T., Fujita N., Maeda M., Ishihama A. 2005; Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 10:907–918 [View Article][PubMed]
    [Google Scholar]
  45. Shimada T., Ishihama A., Busby S. J. W., Grainger D. C. 2008; The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 36:3950–3955 [CrossRef]
    [Google Scholar]
  46. Shimada T., Fujita N., Yamamoto K., Ishihama A. 2011; Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE 6:e20081 [View Article][PubMed]
    [Google Scholar]
  47. Shimada T., Yamazaki Y., Tanaka K., Ishihama A. 2014; The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli . PLoS ONE 9:e90447 [View Article][PubMed]
    [Google Scholar]
  48. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96 [View Article][PubMed]
    [Google Scholar]
  49. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89 [View Article][PubMed]
    [Google Scholar]
  50. Tal N., Schuldiner S. 2009; A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 106:9051–9056[PubMed] [CrossRef]
    [Google Scholar]
  51. Teramoto J., Yoshimura S. H., Takeyasu K., Ishihama A. 2010; A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res 38:3605–3618 [View Article][PubMed]
    [Google Scholar]
  52. Yamamoto K. 2014; The hierarchic network of metal-response transcription factors in Escherichia coli . Biosci Biotechnol Biochem 78:737–747 [View Article][PubMed]
    [Google Scholar]
  53. Yamamoto K., Ishihama A. 2003; Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47:183–194 [View Article][PubMed]
    [Google Scholar]
  54. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A. 2005; Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli . J Biol Chem 280:1448–1456 [View Article][PubMed]
    [Google Scholar]
  55. Yamanaka Y., Ishihama A., Yamamoto K. 2012; Induction of YdeO, a regulator for acid resistance genes, by ultraviolet irradiation in Escherichia coli . Biosci Biotechnol Biochem 76:1236–1238[PubMed]
    [Google Scholar]
  56. Yamanaka Y., Oshima T., Ishihama A., Yamamoto T. 2014; The role of YdeO regulator for Escherichia coli response to acidic and anaerobic stresses. PLoS ONE 9:e111962[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083550-0
Loading
/content/journal/micro/10.1099/mic.0.083550-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error