1887

Abstract

Sulfur makes up 1 % of the dry mass of bacteria, and it is an abundant element (0.1 %) on earth. Sulfur in the environment is, however, mostly in oxidized forms and inaccessible to living organisms. At present, the entire assimilation pathway of external sulfur to sulfur-containing biomolecules and its regulation in remain poorly understood, except for the metabolic pathway of cysteine synthesis, the first-step metabolite of sulfur assembly. During the search for regulation targets of uncharacterized transcription factors by Genomic SELEX screening, we found that the hitherto uncharacterized YdcN regulates a set of genes involved in the utilization of sulfur, including the generation of sulfate and its reduction, the synthesis of cysteine, the synthesis of enzymes containing Fe–S as cofactors, and the modification of tRNA with use of sulfur-containing substrates. Taking these findings together, we propose renaming YdcN as SutR (regulator of sulfur utilization).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083550-0
2015-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/99.html?itemId=/content/journal/micro/10.1099/mic.0.083550-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:0008 [CrossRef][PubMed]
    [Google Scholar]
  2. Burman J. D., Harris R. L., Hauton K. A., Lawson D. M., Sawers R. G.. 2004; The iron-sulfur cluster in the L-serine dehydratase TdcG from Escherichia coli is required for enzyme activity. FEBS Lett576:442–444 [CrossRef][PubMed]
    [Google Scholar]
  3. Burton N. A., Johnson M. D., Antczak P., Robinson A., Lund P. A.. 2010; Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics. J Mol Biol401:726–742 [CrossRef][PubMed]
    [Google Scholar]
  4. Casadaban M. J.. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol104:541–555 [CrossRef][PubMed]
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  6. Desai K. K., Miller B. G.. 2010; Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate. Proc Natl Acad Sci U S A107:17968–17973 [CrossRef][PubMed]
    [Google Scholar]
  7. El Yacoubi B., Bailly M., de Crécy-Lagard V.. 2012; Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet46:69–95 [CrossRef][PubMed]
    [Google Scholar]
  8. Fleischhacker A. S., Stubna A., Hsueh K.-L., Guo Y., Teter S. J., Rose J. C., Brunold T. C., Markley J. L., Münck E., Kiley P. J.. 2012; Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR. Biochemistry51:4453–4462 [CrossRef][PubMed]
    [Google Scholar]
  9. Fujita N., Ishihama A.. 1996; Reconstitution of RNA polymerase. Methods Enzymol273:121–130 [CrossRef][PubMed]
    [Google Scholar]
  10. Golovina A. Y., Sergiev P. V., Golovin A. V., Serebryakova M. V., Demina I., Govorun V. M., Dontsova O. A.. 2009; The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC). RNA15:1134–1141 [CrossRef][PubMed]
    [Google Scholar]
  11. Guymer D., Maillard J., Sargent F.. 2009; A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. Arch Microbiol191:519–528 [CrossRef][PubMed]
    [Google Scholar]
  12. Guzman L. M., Belin D., Carson M. J., Beckwith J.. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130
    [Google Scholar]
  13. Hidese R., Mihara H., Kurihara T., Esaki N.. 2014; Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis. J Bacteriol196:1238–1249 [CrossRef][PubMed]
    [Google Scholar]
  14. Hindson V. J., Moody P. C., Rowe A. J., Shaw W. V.. 2000; Serine acetyltransferase from Escherichia coli is a dimer of trimers. J Biol Chem275:461–466 [CrossRef][PubMed]
    [Google Scholar]
  15. Igarashi K., Ishihama A.. 1991; Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell65:1015–1022 [CrossRef][PubMed]
    [Google Scholar]
  16. Ishihama A.. 2000; Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol54:499–518 [CrossRef][PubMed]
    [Google Scholar]
  17. Ishihama A.. 2009; The nucleoid: an overview. In EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Boek A., Curtiss R. III, Kaper J. B., Karp P. D., Neidhardt F. C., Nystrom T., Slauch J. M., Squires C. L., Ussery D.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Ishihama A.. 2010; Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev34:628–645[PubMed]
    [Google Scholar]
  19. Ishihama A.. 2012; Prokaryotic genome regulation: a revolutionary paradigm. Proc Jpn Acad, Ser B, Phys Biol Sci88:485–508 [CrossRef][PubMed]
    [Google Scholar]
  20. Ishihama A., Kori A., Koshio E., Yamada K., Maeda H., Shimada T., Makinoshima H., Iwata A., Fujita N.. 2014; Intracellular Concentrations of Transcription Factors in Escherichia coli: 65 species with known regulatory functions. J Bacteriol196:2718–2727 [CrossRef][PubMed]
    [Google Scholar]
  21. Jishage M., Ishihama A.. 1997; Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol179:959–963[PubMed]
    [Google Scholar]
  22. Kambampati R., Lauhon C. T.. 2000; Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J Biol Chem275:10727–10730 [CrossRef][PubMed]
    [Google Scholar]
  23. Kertesz M. A.. 2000; Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev24:135–175[PubMed]
    [Google Scholar]
  24. Keseler I. M., Mackie A., Peralta-Gil M., Santos-Zavaleta A., Gama-Castro S., Bonavides-Martínez C., Fulcher C., Huerta A. M., Kothari A.. & other authors ( 2013; EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res41:Database issueD605–D612 [CrossRef][PubMed]
    [Google Scholar]
  25. Kredich N. M., Tomkins G. M.. 1966; The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium . J Biol Chem241:4955–4965[PubMed]
    [Google Scholar]
  26. Kurata T., Katayama A., Hiramatsu M., Kiguchi Y., Takeuchi M., Watanabe T., Ogasawara H., Ishihama A., Yamamoto K.. 2013; Identification of the set of genes, including non-annotated morA, under the direct control of ModE in Escherichia coli . J Bacteriol195:4496–4505[PubMed][CrossRef]
    [Google Scholar]
  27. Lanois A., Jubelin G., Givaudan A.. 2008; FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus . Mol Microbiol68:516–533 [CrossRef][PubMed]
    [Google Scholar]
  28. Lubitz S. P., Weiner J. H.. 2003; The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch Biochem Biophys418:205–216 [CrossRef][PubMed]
    [Google Scholar]
  29. Miller J. F.. 1992; A short course in bacterial genetics Cold Spring Harbour, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  30. Mueller E. G., Buck C. J., Palenchar P. M., Barnhart L. E., Paulson J. L.. 1998; Identification of a gene involved in the generation of 4-thiouridine in tRNA. Nucleic Acids Res26:2606–2610 [CrossRef][PubMed]
    [Google Scholar]
  31. Nakano M., Ogasawara H., Shimada T., Yamamoto K., Ishihama A.. 2014; Involvement of cAMP-CRP in transcription activation and repression of the pck gene encoding PEP carboxykinase, the key enzyme of gluconeogenesis. FEMS Microbiol Lett355:93–99 [CrossRef][PubMed]
    [Google Scholar]
  32. Neumann M., Mittelstädt G., Iobbi-Nivol C., Saggu M., Lendzian F., Hildebrandt P., Leimkühler S.. 2009; A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli . FEBS J276:2762–2774 [CrossRef][PubMed]
    [Google Scholar]
  33. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A.. 2010; Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology156:2470–2483 [CrossRef][PubMed]
    [Google Scholar]
  34. Ogasawara H., Yamamoto K., Ishihama A.. 2011;Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis J Bacteriol193:2587–2597 [CrossRef][PubMed]
    [Google Scholar]
  35. Pesavento C., Hengge R.. 2012; The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity. Nucleic Acids Res40:4783–4793 [CrossRef][PubMed]
    [Google Scholar]
  36. Riley M., Abe T., Arnaud M. B., Berlyn M. K. B., Blattner F. R., Chaudhuri R. R., Glasner J. D., Horiuchi T., Keseler I. M.. & other authors ( 2006; Escherichia coli K-12: a cooperatively developed annotation snapshot–2005. Nucleic Acids Res34:1–9 [CrossRef][PubMed]
    [Google Scholar]
  37. Rivetti C., Guthold M., Bustamante C.. 1999; Wrapping of DNA around the E.coli RNA polymerase open promoter complex. EMBO J18:4464–4475 [CrossRef][PubMed]
    [Google Scholar]
  38. Roche B., Aussel L., Ezraty B., Mandin P., Py B., Barras F.. 2013; Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta1827:455–469 [CrossRef][PubMed]
    [Google Scholar]
  39. Rossi E., Motta S., Mauri P., Landini P.. 2014; Sulfate assimilation pathway intermediate phosphoadenosine 59-phosphosulfate acts as a signal molecule affecting production of curli fibres in Escherichia coli . Microbiology160:1832–1844 [CrossRef][PubMed]
    [Google Scholar]
  40. Ryals J., Hsu R. Y., Lipsett M. N., Bremer H.. 1982; Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J Bacteriol151:899–904[PubMed]
    [Google Scholar]
  41. Sambrook J., Russell D. W.. 2001;) Molecular cloning Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Segel I. H., Renosto F., Seubert P. A.. 1987; Sulfate-activating enzymes. Methods Enzymol143:334–349 [CrossRef][PubMed]
    [Google Scholar]
  43. Shimada K., Ogasawara H., Yamada K., Shimura M., Kori A., Shimada T., Yamanaka Y., Yamamoto K., Ishihama A.. 2013; Screening of promoter-specific transcription factors: multiple regulators for the sdiA gene involved in cell division control and quorum sensing. Microbiology159:2501–2512 [CrossRef][PubMed]
    [Google Scholar]
  44. Shimada T., Fujita N., Maeda M., Ishihama A.. 2005; Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells10:907–918 [CrossRef][PubMed]
    [Google Scholar]
  45. Shimada T., Ishihama A., Busby S. J. W., Grainger D. C.. 2008; The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res36:3950–3955[CrossRef]
    [Google Scholar]
  46. Shimada T., Fujita N., Yamamoto K., Ishihama A.. 2011; Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE6:e20081 [CrossRef][PubMed]
    [Google Scholar]
  47. Shimada T., Yamazaki Y., Tanaka K., Ishihama A.. 2014; The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli . PLoS ONE9:e90447 [CrossRef][PubMed]
    [Google Scholar]
  48. Simons R. W., Houman F., Kleckner N.. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  49. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89 [CrossRef][PubMed]
    [Google Scholar]
  50. Tal N., Schuldiner S.. 2009; A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A106:9051–9056[PubMed][CrossRef]
    [Google Scholar]
  51. Teramoto J., Yoshimura S. H., Takeyasu K., Ishihama A.. 2010; A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res38:3605–3618 [CrossRef][PubMed]
    [Google Scholar]
  52. Yamamoto K.. 2014; The hierarchic network of metal-response transcription factors in Escherichia coli . Biosci Biotechnol Biochem78:737–747 [CrossRef][PubMed]
    [Google Scholar]
  53. Yamamoto K., Ishihama A.. 2003; Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol47:183–194 [CrossRef][PubMed]
    [Google Scholar]
  54. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A.. 2005; Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli . J Biol Chem280:1448–1456 [CrossRef][PubMed]
    [Google Scholar]
  55. Yamanaka Y., Ishihama A., Yamamoto K.. 2012; Induction of YdeO, a regulator for acid resistance genes, by ultraviolet irradiation in Escherichia coli . Biosci Biotechnol Biochem76:1236–1238[PubMed]
    [Google Scholar]
  56. Yamanaka Y., Oshima T., Ishihama A., Yamamoto T.. 2014; The role of YdeO regulator for Escherichia coli response to acidic and anaerobic stresses. PLoS ONE9:e111962[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083550-0
Loading
/content/journal/micro/10.1099/mic.0.083550-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error