1887

Abstract

and are often co-isolated in cases of biofilm-associated infections. can cause systemic disease through morphological switch from the rounded yeast to the invasive hyphal form. Alternatively, systemic infections arise from seeding through breaks in host epithelial layers although many patients have no documented portal of entry. We describe a novel strategy by which is able to invade host tissue and disseminate via adherence to the invasive hyphal elements of and findings demonstrate a specific binding of the staphylococci to the candida hyphal elements. The cell wall adhesin Als3p binds to multiple staphylococcal adhesins. Furthermore, Als3p is required for to transport into the tissue and cause a disseminated infection in an oral co-colonization model. These findings suggest that can facilitate the invasion of across mucosal barriers, leading to systemic infection in co-colonized patients.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083485-0
2015-01-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/168.html?itemId=/content/journal/micro/10.1099/mic.0.083485-0&mimeType=html&fmt=ahah

References

  1. Acton D. S., Plat-Sinnige M. J., van Wamel W., de Groot N., van Belkum A.. ( 2009;). Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact. ? Eur J Clin Microbiol Infect Dis 28:, 115–127. [CrossRef][PubMed]
    [Google Scholar]
  2. Adam B., Baillie G. S., Douglas L. J.. ( 2002;). Mixed species biofilms of Candida albicans and Staphylococcus epidermidis.. J Med Microbiol 51:, 344–349.[PubMed]
    [Google Scholar]
  3. Ali S. A., Cesani F., Nusynowitz M. L., Briscoe E. G., Shirtliff M. E., Mader J. T.. ( 1997;). Skeletal scintigraphy with technetium-99m-tetraphenyl porphyrin sulfonate for the detection and determination of osteomyelitis in an animal model. . J Nucl Med 38:, 1999–2002.[PubMed]
    [Google Scholar]
  4. Back-Brito G. N., Mota A. J., Vasconcellos T. C., Querido S. M., Jorge A. O., Reis A. S., Balducci I., Koga-Ito C. Y.. ( 2009;). Frequency of Candida spp. in the oral cavity of Brazilian HIV-positive patients and correlation with CD4 cell counts and viral load. . Mycopathologia 167:, 81–87. [CrossRef][PubMed]
    [Google Scholar]
  5. Back-Brito G. N., El Ackhar V. N., Querido S. M., dos Santos S. S., Jorge A. O., Reis A. S., Koga-Ito C. Y.. ( 2011;). Staphylococcus spp., Enterobacteriaceae and Pseudomonadaceae oral isolates from Brazilian HIV-positive patients. Correlation with CD4 cell counts and viral load. . Arch Oral Biol 56:, 1041–1046. [CrossRef][PubMed]
    [Google Scholar]
  6. Baena-Monroy T., Moreno-Maldonado V., Franco-Martínez F., Aldape-Barrios B., Quindós G., Sánchez-Vargas L. O.. ( 2005;). Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. . Med Oral Patol Oral Cir Bucal 10: (Suppl 1), E27–E39.[PubMed]
    [Google Scholar]
  7. Bagg J., Silverwood R. W.. ( 1986;). Coagglutination reactions between Candida albicans and oral bacteria. . J Med Microbiol 22:, 165–169. [CrossRef][PubMed]
    [Google Scholar]
  8. Bassetti M., Trecarichi E. M., Mesini A., Spanu T., Giacobbe D. R., Rossi M., Shenone E., Pascale G. D., Molinari M. P.. & other authors ( 2012;). Risk factors and mortality of healthcare-associated and community-acquired Staphylococcus aureus bacteraemia. . Clin Microbiol Infect 18:, 862–869. [CrossRef][PubMed]
    [Google Scholar]
  9. Bien J., Sokolova O., Bozko P.. ( 2011;). Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. . J Pathogens 2011:, 601905. [CrossRef][PubMed]
    [Google Scholar]
  10. Bose J. L., Lehman M. K., Fey P. D., Bayles K. W.. ( 2012;). Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. . PLoS ONE 7:, e42244. [CrossRef][PubMed]
    [Google Scholar]
  11. Brady R. A., Leid J. G., Camper A. K., Costerton J. W., Shirtliff M. E.. ( 2006;). Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. . Infect Immun 74:, 3415–3426. [CrossRef][PubMed]
    [Google Scholar]
  12. Brady R. A., Leid J. G., Kofonow J., Costerton J. W., Shirtliff M. E.. ( 2007;). Immunoglobulins to surface-associated biofilm immunogens provide a novel means of visualization of methicillin-resistant Staphylococcus aureus biofilms. . Appl Environ Microbiol 73:, 6612–6619. [CrossRef][PubMed]
    [Google Scholar]
  13. Brady R. A., O’May G. A., Leid J. G., Prior M. L., Costerton J. W., Shirtliff M. E.. ( 2011;). Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. . Infect Immun 79:, 1797–1803. [CrossRef][PubMed]
    [Google Scholar]
  14. Brehm-Stecher B. F., Johnson E. A.. ( 2003;). Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. . Antimicrob Agents Chemother 47:, 3357–3360. [CrossRef][PubMed]
    [Google Scholar]
  15. Brogden K. A.. ( 2003;). Polymicrobial infections in animals and humans. . In American Society for Microbiology Conference on Polymicrobial Diseases, October 19-23, Lake Tahoe, Nevada.
    [Google Scholar]
  16. Brogden K. A., Gerberding J. M.. ( 2002;). Polymicrobial Diseases, pp. 1–446. Washington:: American Society for Microbiology;.
    [Google Scholar]
  17. Budtz-Jłrgensen E., Mojon P., Banon-Clément J. M., Baehni P.. ( 1996;). Oral candidosis in long-term hospital care: comparison of edentulous and dentate subjects. . Oral Dis 2:, 285–290. [CrossRef][PubMed]
    [Google Scholar]
  18. Calderone R., Clancy C.. ( 2012;). Candida and Candidiasis, , 2nd edn.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Cannon R. D., Chaffin W. L.. ( 2001;). Colonization is a crucial factor in oral candidiasis. . J Dent Educ 65:, 785–787.[PubMed]
    [Google Scholar]
  20. Carlson E.. ( 1983;). Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity. . Infect Immun 42:, 285–292.[PubMed]
    [Google Scholar]
  21. Carlson E., Johnson G.. ( 1985;). Protection by Candida albicans of Staphylococcus aureus in the establishment of dual infection in mice. . Infect Immun 50:, 655–659.[PubMed]
    [Google Scholar]
  22. Chen C., Krishnan V., Macon K., Manne K., Narayana S. V., Schneewind O.. ( 2013;). Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus.. J Biol Chem 288:, 29440–29452. [CrossRef][PubMed]
    [Google Scholar]
  23. Clarke S. R., Foster S. J.. ( 2006;). Surface adhesins of Staphylococcus aureus.. Adv Microb Physiol 51:, 187–224. [CrossRef][PubMed]
    [Google Scholar]
  24. Cleary I. A., Reinhard S. M., Miller C. L., Murdoch C., Thornhill M. H., Lazzell A. L., Monteagudo C., Thomas D. P., Saville S. P.. ( 2011;). Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. . Microbiology 157:, 1806–1815. [CrossRef][PubMed]
    [Google Scholar]
  25. Costerton J. W., Marrie T. J., Cheng K. J.. ( 1985;). Phenomena of Bacterial Adhesion, pp. 650–654. Edited by Savage D., Fletcher M... New York:: Plenum Press;.
    [Google Scholar]
  26. Cuesta A. I., Jewtuchowicz V., Brusca M. I., Nastri M. L., Rosa A. C.. ( 2010;). Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients. . Acta Odontol Latinoam 23:, 20–26.[PubMed]
    [Google Scholar]
  27. de Repentigny L., Lewandowski D., Jolicoeur P.. ( 2004;). Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. . Clin Microbiol Rev 17:, 729–759. [CrossRef][PubMed]
    [Google Scholar]
  28. del Rio A., Cervera C., Moreno A., Moreillon P., Miró J. M.. ( 2009;). Patients at risk of complications of Staphylococcus aureus bloodstream infection. . Clin Infect Dis 48: (Suppl 4), S246–S253. [CrossRef][PubMed]
    [Google Scholar]
  29. Delorenze G. N., Horberg M. A., Silverberg M. J., Tsai A., Quesenberry C. P., Baxter R.. ( 2013;). Trends in annual incidence of methicillin-resistant Staphylococcus aureus (MRSA) infection in HIV-infected and HIV-uninfected patients. . Epidemiol Infect 141:, 2392–2402. [CrossRef][PubMed]
    [Google Scholar]
  30. Diep B. A., Gill S. R., Chang R. F., Phan T. H., Chen J. H., Davidson M. G., Lin F., Lin J., Carleton H. A.. & other authors ( 2006;). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus.. Lancet 367:, 731–739. [CrossRef][PubMed]
    [Google Scholar]
  31. Dongari-Bagtzoglou A., Dwivedi P., Ioannidou E., Shaqman M., Hull D., Burleson J.. ( 2009;). Oral Candida infection and colonization in solid organ transplant recipients. . Oral Microbiol Immunol 24:, 249–254. [CrossRef][PubMed]
    [Google Scholar]
  32. Dwivedi P., Thompson A., Xie Z., Kashleva H., Ganguly S., Mitchell A. P., Dongari-Bagtzoglou A.. ( 2011;). Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. . PLoS ONE 6:, e16218. [CrossRef][PubMed]
    [Google Scholar]
  33. Edwards A. M., Grossman T. J., Rudney J. D.. ( 2006;). Fusobacterium nucleatum transports noninvasive Streptococcus cristatus into human epithelial cells. . Infect Immun 74:, 654–662. [CrossRef][PubMed]
    [Google Scholar]
  34. Ferry T., Perpoint T., Vandenesch F., Etienne J.. ( 2005;). Virulence determinants in Staphylococcus aureus and their involvement in clinical syndromes. . Curr Infect Dis Rep 7:, 420–428. [CrossRef][PubMed]
    [Google Scholar]
  35. Fidel P. L. Jr. ( 2006;). Candida-host interactions in HIV disease: relationships in oropharyngeal candidiasis. . Adv Dent Res 19:, 80–84. [CrossRef][PubMed]
    [Google Scholar]
  36. Gillum A. M., Tsay E. Y., Kirsch D. R.. ( 1984;). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. . Mol Gen Genet 198:, 179–182. [CrossRef][PubMed]
    [Google Scholar]
  37. Goetghebeur M., Landry P. A., Han D., Vicente C.. ( 2007;). Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. . Can J Infect Dis Med Microbiol 18:, 27–34.[PubMed]
    [Google Scholar]
  38. Gordon R. J., Lowy F. D.. ( 2008;). Pathogenesis of methicillin-resistant Staphylococcus aureus infection. . Clin Infect Dis 46: (Suppl 5), S350–S359. [CrossRef][PubMed]
    [Google Scholar]
  39. Gupta N., Haque A., Mukhopadhyay G., Narayan R. P., Prasad R.. ( 2005;). Interactions between bacteria and Candida in the burn wound. . Burns 31:, 375–378. [CrossRef][PubMed]
    [Google Scholar]
  40. Hall H. I., Song R., Rhodes P., Prejean J., An Q., Lee L. M., Karon J., Brookmeyer R., Kaplan E. H.. & other authors ( 2008;). Estimation of HIV incidence in the United States. . JAMA 300:, 520–529. [CrossRef][PubMed]
    [Google Scholar]
  41. Harriott M. M., Noverr M. C.. ( 2009;). Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. . Antimicrob Agents Chemother 53:, 3914–3922. [CrossRef][PubMed]
    [Google Scholar]
  42. Harro J. M., Daugherty S., Bruno V. M., Jabra-Rizk M. A., Rasko D. A., Shirtliff M. E.. ( 2013;). Draft genome sequence of the Methicillin-Resistant Staphylococcus aureus isolate MRSA-M2. . Genome Announc 1:, e00037-12. [CrossRef][PubMed]
    [Google Scholar]
  43. Holmes A. R., Cannon R. D., Jenkinson H. F.. ( 1995;). Interactions of Candida albicans with bacteria and salivary molecules in oral biofilms. . J Ind Microbiol 15:, 208–213. [CrossRef][PubMed]
    [Google Scholar]
  44. Holmes A. R., McNab R., Jenkinson H. F.. ( 1996;). Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. . Infect Immun 64:, 4680–4685.[PubMed]
    [Google Scholar]
  45. Ibrahim A. S., Luo G., Gebremariam T., Lee H., Schmidt C. S., Hennessey J. P. Jr, French S. W., Yeaman M. R., Filler S. G., Edwards J. E. Jr. ( 2013;). NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. . Vaccine 31:, 5549–5556. [CrossRef][PubMed]
    [Google Scholar]
  46. Jabra-Rizk M. A., Meiller T. F., James C. E., Shirtliff M. E.. ( 2006;). Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. . Antimicrob Agents Chemother 50:, 1463–1469. [CrossRef][PubMed]
    [Google Scholar]
  47. Jarosz L. M., Deng D. M., van der Mei H. C., Crielaard W., Krom B. P.. ( 2009;). Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. . Eukaryot Cell 8:, 1658–1664. [CrossRef][PubMed]
    [Google Scholar]
  48. Jenkinson H., Douglas L.. ( 2002;). Candida Interactions with Bacterial Biofilms, pp. 357–373. Edited by Brogden K. A., Guthmiller J. M... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  49. Jenkinson H. F., Lala H. C., Shepherd M. G.. ( 1990;). Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans.. Infect Immun 58:, 1429–1436.[PubMed]
    [Google Scholar]
  50. Kamai Y., Kubota M., Kamai Y., Hosokawa T., Fukuoka T., Filler S. G.. ( 2002;). Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. . Infect Immun 70:, 5256–5258. [CrossRef][PubMed]
    [Google Scholar]
  51. Kennedy A. D., Otto M., Braughton K. R., Whitney A. R., Chen L., Mathema B., Mediavilla J. R., Byrne K. A., Parkins L. D.. & other authors ( 2008;). Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. . Proc Natl Acad Sci U S A 105:, 1327–1332. [CrossRef][PubMed]
    [Google Scholar]
  52. Kennedy A. D., Porcella S. F., Martens C., Whitney A. R., Braughton K. R., Chen L., Craig C. T., Tenover F. C., Kreiswirth B. N.. & other authors ( 2010;). Complete nucleotide sequence analysis of plasmids in strains of Staphylococcus aureus clone USA300 reveals a high level of identity among isolates with closely related core genome sequences. . J Clin Microbiol 48:, 4504–4511. [CrossRef][PubMed]
    [Google Scholar]
  53. Kenny J. G., Ward D., Josefsson E., Jonsson I. M., Hinds J., Rees H. H., Lindsay J. A., Tarkowski A., Horsburgh M. J.. ( 2009;). The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. . PLoS ONE 4:, e4344. [CrossRef][PubMed]
    [Google Scholar]
  54. Klevens R. M., Morrison M. A., Nadle J., Petit S., Gershman K., Ray S., Harrison L. H., Lynfield R., Dumyati G.. & other authors ( 2007;). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. . JAMA 298:, 1763–1771. [CrossRef][PubMed]
    [Google Scholar]
  55. Klotz S. A., Gaur N. K., De Armond R., Sheppard D., Khardori N., Edwards J. E. Jr, Lipke P. N., El-Azizi M.. ( 2007;). Candida albicans Als proteins mediate aggregation with bacteria and yeasts. . Med Mycol 45:, 363–370. [CrossRef][PubMed]
    [Google Scholar]
  56. Kulak-Ozkan Y., Kazazoglu E., Arikan A.. ( 2002;). Oral hygiene habits, denture cleanliness, presence of yeasts and stomatitis in elderly people. . J Oral Rehabil 29:, 300–304. [CrossRef][PubMed]
    [Google Scholar]
  57. Lazarevic V., Whiteson K., Hernandez D., François P., Schrenzel J.. ( 2010;). Study of inter- and intra-individual variations in the salivary microbiota. . BMC Genomics 11:, 523. [CrossRef][PubMed]
    [Google Scholar]
  58. Leid J. G., Shirtliff M. E., Costerton J. W., Stoodley P.. ( 2002;). Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. . Infect Immun 70:, 6339–6345. [CrossRef][PubMed]
    [Google Scholar]
  59. Li J., Busscher H. J., van der Mei H. C., Norde W., Krom B. P., Sjollema J.. ( 2011;). Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber: part II: use of fluorescence imaging. . Colloids Surf B Biointerfaces 87:, 427–432. [CrossRef][PubMed]
    [Google Scholar]
  60. Lin L., Ibrahim A. S., Xu X., Farber J. M., Avanesian V., Baquir B., Fu Y., French S. W., Edwards J. E. Jr, Spellberg B.. ( 2009;). Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. . PLoS Pathog 5:, e1000703. [CrossRef][PubMed]
    [Google Scholar]
  61. Lipke P. N., Garcia M. C., Alsteens D., Ramsook C. B., Klotz S. A., Dufrêne Y. F.. ( 2012;). Strengthening relationships: amyloids create adhesion nanodomains in yeasts. . Trends Microbiol 20:, 59–65. [CrossRef][PubMed]
    [Google Scholar]
  62. Lynch A. S., Robertson G. T.. ( 2008;). Bacterial and fungal biofilm infections. . Annu Rev Med 59:, 415–428. [CrossRef][PubMed]
    [Google Scholar]
  63. Marukutira T., Huprikar S., Azie N., Quan S. P., Meier-Kriesche H. U., Horn D. L.. ( 2014;). Clinical characteristics and outcomes in 303 HIV-infected patients with invasive fungal infections: data from the Prospective Antifungal Therapy Alliance registry, a multicenter, observational study. . HIV/AIDS–Research and Palliative Care 6:, 39–47. [CrossRef][PubMed]
    [Google Scholar]
  64. Mazmanian S. K., Liu G., Jensen E. R., Lenoy E., Schneewind O.. ( 2000;). Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. . Proc Natl Acad Sci U S A 97:, 5510–5515. [CrossRef][PubMed]
    [Google Scholar]
  65. McCarthy A. J., Lindsay J. A.. ( 2010;). Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. . BMC Microbiol 10:, 173. [CrossRef][PubMed]
    [Google Scholar]
  66. Menzies B. E.. ( 2003;). The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. . Curr Opin Infect Dis 16:, 225–229. [CrossRef][PubMed]
    [Google Scholar]
  67. Nigam S., Ciccoli R., Ivanov I., Sczepanski M., Deva R.. ( 2011;). On mechanism of quorum sensing in Candida albicans by 3(R)-hydroxy-tetradecaenoic acid. . Curr Microbiol 62:, 55–63. [CrossRef][PubMed]
    [Google Scholar]
  68. Nobile C. J., Schneider H. A., Nett J. E., Sheppard D. C., Filler S. G., Andes D. R., Mitchell A. P.. ( 2008;). Complementary adhesin function in C. albicans biofilm formation. . Curr Biol 18:, 1017–1024. [CrossRef][PubMed]
    [Google Scholar]
  69. Ohara-Nemoto Y., Haraga H., Kimura S., Nemoto T. K.. ( 2008;). Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. . J Med Microbiol 57:, 95–99. [CrossRef][PubMed]
    [Google Scholar]
  70. Olczak-Kowalczyk D., Daszkiewicz M., Krasuska-Sławińska, Dembowska-Bagińska B., Gozdowski D., Daszkiewicz P., Fronc B., Semczuk K.. ( 2012;). Bacteria and Candida yeasts in inflammations of the oral mucosa in children with secondary immunodeficiency. . J Oral Pathol Med 41:, 568–576.[PubMed]
    [Google Scholar]
  71. Palmqvist N., Foster T., Fitzgerald J. R., Josefsson E., Tarkowski A.. ( 2005;). Fibronectin-binding proteins and fibrinogen-binding clumping factors play distinct roles in staphylococcal arthritis and systemic inflammation. . J Infect Dis 191:, 791–798. [CrossRef][PubMed]
    [Google Scholar]
  72. Pate J. C., Jones D. B., Wilhelmus K. R.. ( 2006;). Prevalence and spectrum of bacterial co-infection during fungal keratitis. . Br J Ophthalmol 90:, 289–292. [CrossRef][PubMed]
    [Google Scholar]
  73. Peleg A. Y., Hogan D. A., Mylonakis E.. ( 2010;). Medically important bacterial-fungal interactions. . Nat Rev Microbiol 8:, 340–349. [CrossRef][PubMed]
    [Google Scholar]
  74. Perlroth J., Choi B., Spellberg B.. ( 2007;). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. . Med Mycol 45:, 321–346. [CrossRef][PubMed]
    [Google Scholar]
  75. Peters B. M., Noverr M. C.. ( 2013;). Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. . Infect Immun 81:, 2178–2189. [CrossRef][PubMed]
    [Google Scholar]
  76. Peters B. M., Jabra-Rizk M. A., Scheper M. A., Leid J. G., Costerton J. W., Shirtliff M. E.. ( 2010;). Microbial interactions and differential protein expression in Staphylococcus aureus -Candida albicans dual-species biofilms. . FEMS Immunol Med Microbiol 59:, 493–503.[PubMed]
    [Google Scholar]
  77. Peters B. M., Ovchinnikova E. S., Krom B. P., Schlecht L. M., Zhou H., Hoyer L. L., Busscher H. J., van der Mei H. C., Jabra-Rizk M. A., Shirtliff M. E.. ( 2012;). Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. . Microbiology 158:, 2975–2986. [CrossRef][PubMed]
    [Google Scholar]
  78. Phan Q. T., Myers C. L., Fu Y., Sheppard D. C., Yeaman M. R., Welch W. H., Ibrahim A. S., Edwards J. E. Jr, Filler S. G.. ( 2007;). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. . PLoS Biol 5:, e64. [CrossRef][PubMed]
    [Google Scholar]
  79. Pittet D., Li N., Wenzel R. P.. ( 1993;). Association of secondary and polymicrobial nosocomial bloodstream infections with higher mortality. . Eur J Clin Microbiol Infect Dis 12:, 813–819. [CrossRef][PubMed]
    [Google Scholar]
  80. Port F. K., Merion R. M., Finley M. P., Goodrich N. P., Wolfe R. A.. ( 2007;). Trends in organ donation and transplantation in the United States, 1996-2005. . Am J Transplant 7: (s1), 1319–1326. [CrossRef][PubMed]
    [Google Scholar]
  81. Prabhakara R., Harro J. M., Leid J. G., Harris M., Shirtliff M. E.. ( 2011a;). Murine immune response to a chronic Staphylococcus aureus biofilm infection. . Infect Immun 79:, 1789–1796. [CrossRef][PubMed]
    [Google Scholar]
  82. Prabhakara R., Harro J. M., Leid J. G., Keegan A. D., Prior M. L., Shirtliff M. E.. ( 2011b;). Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus.. Infect Immun 79:, 5010–5018. [CrossRef][PubMed]
    [Google Scholar]
  83. Prieto D., Román E., Correia I., Pla J.. ( 2014;). The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans. . PLoS ONE 9:, e87128. [CrossRef][PubMed]
    [Google Scholar]
  84. Ramsook C. B., Tan C., Garcia M. C., Fung R., Soybelman G., Henry R., Litewka A., O’Meally S., Otoo H. N.. & other authors ( 2010;). Yeast cell adhesion molecules have functional amyloid-forming sequences. . Eukaryot Cell 9:, 393–404. [CrossRef][PubMed]
    [Google Scholar]
  85. Saito A., Kokubu E., Inagaki S., Imamura K., Kita D., Lamont R. J., Ishihara K.. ( 2012;). Porphyromonas gingivalis entry into gingival epithelial cells modulated by Fusobacterium nucleatum is dependent on lipid rafts. . Microb Pathog 53:, 234–242. [CrossRef][PubMed]
    [Google Scholar]
  86. Salgado P. S., Yan R., Taylor J. D., Burchell L., Jones R., Hoyer L. L., Matthews S. J., Simpson P. J., Cota E.. ( 2011;). Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans.. Proc Natl Acad Sci U S A 108:, 15775–15779. [CrossRef][PubMed]
    [Google Scholar]
  87. Shirtliff M. E., Calhoun J. H., Mader J. T.. ( 2002;). Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. . Clin Orthop Relat Res 401:, 239–247. [CrossRef][PubMed]
    [Google Scholar]
  88. Shirtliff M. E., Peters B. M., Jabra-Rizk M. A.. ( 2009;). Cross-kingdom interactions: Candida albicans and bacteria. . FEMS Microbiol Lett 299:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  89. Silverman R. J., Nobbs A. H., Vickerman M. M., Barbour M. E., Jenkinson H. F.. ( 2010;). Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. . Infect Immun 78:, 4644–4652. [CrossRef][PubMed]
    [Google Scholar]
  90. Smith A. J., Robertson D., Tang M. K., Jackson M. S., MacKenzie D., Bagg J.. ( 2003;). Staphylococcus aureus in the oral cavity: a three-year retrospective analysis of clinical laboratory data. . Br Dent J 195:, 701–703. [CrossRef][PubMed]
    [Google Scholar]
  91. Stammler Jaliff B., Dahl-Knudsen J., Petersen A., Skov R., Benfield T.. ( 2014;). Outcome and reinfection after Staphylococcus aureus bacteraemia in individuals with and without HIV-1 infection: a case-control study. . BMJ Open 4:, e004075. [CrossRef][PubMed]
    [Google Scholar]
  92. Sudbery P., Gow N., Berman J.. ( 2004;). The distinct morphogenic states of Candida albicans.. Trends Microbiol 12:, 317–324. [CrossRef][PubMed]
    [Google Scholar]
  93. Tawara Y., Honma K., Naito Y.. ( 1996;). Methicillin-resistant Staphylococcus aureus and Candida albicans on denture surfaces. . Bull Tokyo Dent Coll 37:, 119–128.[PubMed]
    [Google Scholar]
  94. Timsit J. F., Cheval C., Gachot B., Bruneel F., Wolff M., Carlet J., Regnier B.. ( 2001;). Usefulness of a strategy based on bronchoscopy with direct examination of bronchoalveolar lavage fluid in the initial antibiotic therapy of suspected ventilator-associated pneumonia. . Intensive Care Med 27:, 640–647. [CrossRef][PubMed]
    [Google Scholar]
  95. Tuft S.. ( 2006;). Polymicrobial infection and the eye. . Br J Ophthalmol 90:, 257–258. [CrossRef][PubMed]
    [Google Scholar]
  96. Valenza G., Tappe D., Turnwald D., Frosch M., König C., Hebestreit H., Abele-Horn M.. ( 2008;). Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. . J Cyst Fibros 7:, 123–127. [CrossRef][PubMed]
    [Google Scholar]
  97. Vazquez J. A., Sobel J. D.. ( 2002;). Mucosal candidiasis. . Infect Dis Clin North Am 16:, 793–820, v. [CrossRef][PubMed]
    [Google Scholar]
  98. Veeh R. H., Shirtliff M. E., Petik J. R., Flood J. A., Davis C. C., Seymour J. L., Hansmann M. A., Kerr K. M., Pasmore M. E., Costerton J. W.. ( 2003;). Detection of Staphylococcus aureus biofilm on tampons and menses components. . J Infect Dis 188:, 519–530. [CrossRef][PubMed]
    [Google Scholar]
  99. Weinberg A., Krisanaprakornkit S., Dale B. A.. ( 1998;). Epithelial antimicrobial peptides: review and significance for oral applications. . Crit Rev Oral Biol Med 9:, 399–414. [CrossRef][PubMed]
    [Google Scholar]
  100. Xu H., Sobue T., Thompson A., Xie Z., Poon K., Ricker A., Cervantes J., Diaz P. I., Dongari-Bagtzoglou A.. ( 2014;). Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. . Cell Microbiol 16:, 214–231. [CrossRef][PubMed]
    [Google Scholar]
  101. Yehia B. R., Fleishman J. A., Wilson L., Hicks P. L., Gborkorquellie T. T., Gebo K. A..HIV Research Network ( 2011;). Incidence of and risk factors for bacteraemia in HIV-infected adults in the era of highly active antiretroviral therapy. . HIV Med 12:, 535–543. [CrossRef][PubMed]
    [Google Scholar]
  102. Zaremba M. L., Daniluk T., Rozkiewicz D., Cylwik-Rokicka D., Kierklo A., Tokajuk G., Dabrowska E., Pawińska M., Klimiuk A.. & other authors ( 2006;). Incidence rate of Candida species in the oral cavity of middle-aged and elderly subjects. . Adv Med Sci 51: (Suppl 1), 233–236.[PubMed]
    [Google Scholar]
  103. Zaura E., Keijser B. J., Huse S. M., Crielaard W.. ( 2009;). Defining the healthy “core microbiome” of oral microbial communities. . BMC Microbiol 9:, 259. [CrossRef][PubMed]
    [Google Scholar]
  104. Zimmerli M., Widmer A. F., Dangel M., Filippi A., Frei R., Meyer J.. ( 2009;). Methicillin-resistant Staphylococcus aureus (MRSA) among dental patients: a problem for infection control in dentistry. ? Clin Oral Investig 13:, 369–373. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083485-0
Loading
/content/journal/micro/10.1099/mic.0.083485-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error