1887

Abstract

Isothiocyanates (ITCs) are natural plant products generated by the enzymic hydrolysis of glucosinolates found in Brassicaceae vegetables. These natural sulfur compounds and their dithiocarbamate conjugates have been previously evaluated for their anti-cancerous properties. Their antimicrobial properties have been previously studied as well, mainly for food preservation and plant pathogen control. Recently, several revelations concerning the mode of action of ITCs in prokaryotes have emerged. This review addresses these new studies and proposes a model to summarize the current knowledge and hypotheses for the antibacterial effect of ITCs and whether they may provide the basis for the design of novel antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082362-0
2015-02-01
2020-03-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/229.html?itemId=/content/journal/micro/10.1099/mic.0.082362-0&mimeType=html&fmt=ahah

References

  1. Agerbirk N., Olsen C. E.. 2012; Glucosinolate structures in evolution. Phytochemistry77:16–45 [CrossRef][PubMed]
    [Google Scholar]
  2. Ahn E., Kim J., Shin D.. 2001; Antimicrobial effects of allyl isothiocyanate on several microorganisms. Korean J Food Sci Technol31:206–211
    [Google Scholar]
  3. Aires A., Mota V. R., Saavedra M. J., Monteiro A. A., Simões M., Rosa E. A., Bennett R. N.. 2009a; Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol106:2096–2105 [CrossRef][PubMed]
    [Google Scholar]
  4. Aires A., Mota V. R., Saavedra M. J., Rosa E. A., Bennett R. N.. 2009b; The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J Appl Microbiol106:2086–2095 [CrossRef][PubMed]
    [Google Scholar]
  5. Aslund F., Berndt K. D., Holmgren A.. 1997; Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem272:30780–30786 [CrossRef][PubMed]
    [Google Scholar]
  6. Bacon J. R., Plumb G. W., Howie A. F., Beckett G. J., Wang W., Bao Y.. 2007; Dual action of sulforaphane in the regulation of thioredoxin reductase and thioredoxin in human HepG2 and Caco-2 cells. J Agric Food Chem55:1170–1176 [CrossRef][PubMed]
    [Google Scholar]
  7. Baranova N., Nikaido H.. 2002; The BaeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol184:4168–4176 [CrossRef][PubMed]
    [Google Scholar]
  8. Bending G. D., Lincoln S. D.. 2000; Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol Biochem32:1261–1269 [CrossRef]
    [Google Scholar]
  9. Borek V., Morra M. J., McCaffrey J. P.. 1996; Myrosinase activity in soil extracts. Soil Sci Soc Am J60:1792–1797 [CrossRef]
    [Google Scholar]
  10. Borges A., Serra S., Abreu A. C., Saavedra M. J., Salgado A., Simões M.. 2014; Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling30:183–195 [CrossRef][PubMed]
    [Google Scholar]
  11. Brabban A. D., Edwards C.. 1995; The effects of glucosinolates and their hydrolysis products on microbial growth. J Appl Bacteriol79:171–177 [CrossRef][PubMed]
    [Google Scholar]
  12. Breier A., Ziegelhöffer A.. 2000; “Lysine is the Lord”, thought some scientists in regard to the group interacting with fluorescein isothiocyanate in ATP-binding sites of P-type ATPases but, is it not cysteine?. Gen Physiol Biophys19:253–263[PubMed]
    [Google Scholar]
  13. Bressan M., Roncato M. A., Bellvert F., Comte G., Haichar F. Z., Achouak W., Berge O.. 2009; Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J3:1243–1257 [CrossRef][PubMed]
    [Google Scholar]
  14. Brown P. D., Morra M. J.. 1997; Control of soil-borne plant pests using glucosinolate-containing plants. Adv. Agron61:167–231 [CrossRef]
    [Google Scholar]
  15. Chae C., Sharma S., Hoskins J. R., Wickner S.. 2004; CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM. J Biol Chem279:33147–33153 [CrossRef][PubMed]
    [Google Scholar]
  16. Chan A. C., Ager D., Thompson I. P.. 2013; Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. J Microbiol Methods93:209–217 [CrossRef][PubMed]
    [Google Scholar]
  17. Chikhi N., Holic N., Guellaen G., Laperche Y.. 1999; Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol122:367–380 [CrossRef][PubMed]
    [Google Scholar]
  18. Choesin D. N., Boerner R. E. J.. 1991; Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am J Bot78:1083–1090 [CrossRef]
    [Google Scholar]
  19. Conaway C. C., Krzeminski J., Amin S., Chung F. L.. 2001; Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome P450 enzymes. Chem Res Toxicol14:1170–1176 [CrossRef][PubMed]
    [Google Scholar]
  20. Conaway C. C., Wang C. X., Pittman B., Yang Y. M., Schwartz J. E., Tian D., McIntee E. J., Hecht S. S., Chung F. L.. 2005; Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res65:8548–8557 [CrossRef][PubMed]
    [Google Scholar]
  21. Cordeiro R. P., Krause D. O., Doria J. H., Holley R. A.. 2014; Role of the BaeSR two-component regulatory system in resistance of Escherichia coli O157 : H7 to allyl isothiocyanate. Food Microbiol42:136–141 [CrossRef][PubMed]
    [Google Scholar]
  22. David J. R. D., Ekanayake A., Singh I., Farina B., Meyer M.. 2013; Effect of white mustard essential oil on inoculated Salmonella sp. in a sauce with particulates. J Food Prot76:580–587 [CrossRef][PubMed]
    [Google Scholar]
  23. Delaquis P. J., Mazza G.. 1995; Antimicrobial properties of isothiocyanates in food preservation. Food Technol49:73–84
    [Google Scholar]
  24. Delaquis P. J., Sholberg P. L.. 1997; Antimicrobial activity of gaseous allyl isothiocyanate. J Food Prot60:943
    [Google Scholar]
  25. Dinkova-Kostova A. T., Kostov R. V.. 2012; Glucosinolates and isothiocyanates in health and disease. Trends Mol Med18:337–347 [CrossRef][PubMed]
    [Google Scholar]
  26. Drobnica L., Sturdík E.. 1979; The reaction of carbonyl cyanide phenylhydrazones with thiols. Biochim Biophys Acta585:462–476 [CrossRef][PubMed]
    [Google Scholar]
  27. Dufour V., Alazzam B., Ermel G., Thepaut M., Rossero A., Tresse O., Baysse C.. 2012; Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol2:53 [CrossRef][PubMed]
    [Google Scholar]
  28. Dufour V., Stahl M., Rosenfeld E., Stintzi A., Baysse C.. 2013; Insights into the mode of action of benzyl isothiocyanate on Campylobacter jejuni. . Appl Environ Microbiol79:6958–6968 [CrossRef][PubMed]
    [Google Scholar]
  29. EFSA 2010; EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS): scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. EFSA Journal8:1943–1983
    [Google Scholar]
  30. Fahey R. C., Sundquist A. R.. 1991; Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol64:1–53[PubMed]
    [Google Scholar]
  31. Fahey J. W., Zalcmann A. T., Talalay P.. 2001; The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry56:5–51 [CrossRef][PubMed]
    [Google Scholar]
  32. Fahey J. W., Haristoy X., Dolan P. M., Kensler T. W., Scholtus I., Stephenson K. K., Talalay P., Lozniewski A.. 2002; Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A99:7610–7615 [CrossRef][PubMed]
    [Google Scholar]
  33. Fahey J. W., Wehage S. L., Holtzclaw W. D., Kensler T. W., Egner P. A., Shapiro T. A., Talalay P.. 2012; Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prev Res (Phila)5:603–611 [CrossRef][PubMed]
    [Google Scholar]
  34. Fahey J. W., Stephenson K. K., Wade K. L., Talalay P.. 2013; Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates. Biochem Biophys Res Commun435:1–7 [CrossRef][PubMed]
    [Google Scholar]
  35. Fan J., Crooks C., Creissen G., Hill L., Fairhurst S., Doerner P., Lamb C.. 2011; Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis . Science331:1185–1188 [CrossRef][PubMed]
    [Google Scholar]
  36. Fargier E., Mac Aogáin M., Mooij M. J., Woods D. F., Morrissey J. P., Dobson A. D., Adams C., O’Gara F.. 2012; MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa . J Bacteriol194:3502–3511 [CrossRef][PubMed]
    [Google Scholar]
  37. Fetar H., Gilmour C., Klinoski R., Daigle D. M., Dean C. R., Poole K.. 2011; mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother55:508–514 [CrossRef][PubMed]
    [Google Scholar]
  38. Freitas E., Aires A., de Santos Rosa E. A., Saavedra M. J.. 2013; Antibacterial activity and synergistic effect between watercress extracts, 2-phenylethyl isothiocyanate and antibiotics against 11 isolates of Escherichia coli from clinical and animal source. Lett Appl Microbiol57:266–273[PubMed]
    [Google Scholar]
  39. Gan N., Wu Y. C., Brunet M., Garrido C., Chung F. L., Dai C., Mi L.. 2010; Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem285:35528–35536 [CrossRef][PubMed]
    [Google Scholar]
  40. Ganin H., Rayo J., Amara N., Levy N., Krief P., Meijler M. M.. 2013; Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. Med Chem Commun4:175–179 [CrossRef]
    [Google Scholar]
  41. Gragerov A., Nudler E., Komissarova N., Gaitanaris G. A., Gottesman M. E., Nikiforov V.. 1992; Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. . Proc Natl Acad Sci U S A89:10341–10344 [CrossRef][PubMed]
    [Google Scholar]
  42. Hanschen F. S., Brüggemann N., Brodehl A., Mewis I., Schreiner M., Rohn S., Kroh L. W.. 2012; Characterization of products from the reaction of glucosinolate-derived isothiocyanates with cysteine and lysine derivatives formed in either model systems or broccoli sprouts. J Agric Food Chem60:7735–7745 [CrossRef][PubMed]
    [Google Scholar]
  43. Hashem F. A., Saleh M. M.. 1999; Antimicrobial components of some cruciferae plants (Diplotaxis harra Forsk. and Erucaria microcarpa Boiss.). Phytother Res13:329–332 [CrossRef][PubMed]
    [Google Scholar]
  44. Helmann J. D.. 2011; Bacillithiol, a new player in bacterial redox homeostasis. Antioxid Redox Signal15:123–133 [CrossRef][PubMed]
    [Google Scholar]
  45. Hitchcock A., Hall S. J., Myers J. D., Mulholland F., Jones M. A., Kelly D. J.. 2010; Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni . Microbiology156:2994–3010 [CrossRef][PubMed]
    [Google Scholar]
  46. Holmes C. W., Penn C. W., Lund P. A.. 2010; The hrcA and hspR regulons of Campylobacter jejuni . Microbiology156:158–166 [CrossRef][PubMed]
    [Google Scholar]
  47. Holmgren A.. 1985; Thioredoxin. Annu Rev Biochem54:237–271 [CrossRef][PubMed]
    [Google Scholar]
  48. Hong E., Kim G. H.. 2008; Anticancer and antimicrobial activities of β-phenylethyl isothiocyanate in Brassica rapa L. Food Sci Technol Res14:377–382 [CrossRef]
    [Google Scholar]
  49. Hwang E. S., Jeffery E. H.. 2005; Induction of quinone reductase by sulforaphane and sulforaphane N-acetylcysteine conjugate in murine hepatoma cells. J Med Food8:198–203 [CrossRef][PubMed]
    [Google Scholar]
  50. Jakobsen T. H., Bragason S. K., Phipps R. K., Christensen L. D., van Gennip M., Alhede M., Skindersoe M., Larsen T. O., Høiby N.. & other authors ( 2012a; Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa . Appl Environ Microbiol78:2410–2421 [CrossRef][PubMed]
    [Google Scholar]
  51. Jakobsen T. H., van Gennip M., Phipps R. K., Shanmugham M. S., Christensen L. D., Alhede M., Skindersoe M. E., Rasmussen T. B., Friedrich K.. & other authors ( 2012b; Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother56:2314–2325 [CrossRef][PubMed]
    [Google Scholar]
  52. Jakubíková J., Sedlák J., Bod’o J., Bao Y.. 2006; Effect of isothiocyanates on nuclear accumulation of NF-κB, Nrf2, and thioredoxin in Caco-2 cells. J Agric Food Chem54:1656–1662 [CrossRef][PubMed]
    [Google Scholar]
  53. Jang M., Hong E., Kim G. H.. 2010; Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci75:M412–M416 [CrossRef][PubMed]
    [Google Scholar]
  54. Jiao D., Ho C. T., Foiles P., Chung F. L.. 1994; Identification and quantification of the N-acetylcysteine conjugate of allyl isothiocyanate in human urine after ingestion of mustard. Cancer Epidemiol Biomarkers Prev3:487–492[PubMed]
    [Google Scholar]
  55. Jiao D., Conaway C. C., Wang M. H., Yang C. S., Koehl W., Chung F. L.. 1996; Inhibition of N-nitrosodimethylamine demethylase in rat and human liver microsomes by isothiocyanates and their glutathione, l-cysteine, and N-acetyl-l-cysteine conjugates. Chem Res Toxicol9:932–938 [CrossRef][PubMed]
    [Google Scholar]
  56. Jimenez P. N., Koch G., Thompson J. A., Xavier K. B., Cool R. H., Quax W. J.. 2012; The multiple signaling systems regulating virulence in Pseudomonas aeruginosa . Microbiol Mol Biol Rev76:46–65 [CrossRef][PubMed]
    [Google Scholar]
  57. Jin S. W., Chen G. X., Palacz Z., Wittmann-Liebold B.. 1986; A new sensitive Edman-type reagent: 4-(N-1-dimethylaminonaphthalene-5-sulfonylamino)phenyl isothiocyanate. Its synthesis and application for micro-sequencing of polypeptides. FEBS Lett198:150–154 [CrossRef][PubMed]
    [Google Scholar]
  58. Kassahun K., Davis M., Hu P., Martin B., Baillie T.. 1997; Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol10:1228–1233 [CrossRef][PubMed]
    [Google Scholar]
  59. Kawakami T., Kuroki M., Ishii M., Igarashi Y., Arai H.. 2010; Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. . Environ Microbiol12:1399–1412[PubMed]
    [Google Scholar]
  60. Kim M. G., Lee H. S.. 2009; Growth-inhibiting activities of phenethyl isothiocyanate and its derivatives against intestinal bacteria. J Food Sci74:M467–M471 [CrossRef][PubMed]
    [Google Scholar]
  61. Kjaer A., Conti J.. 1954; Isothiocynates. VII. A convenient synthesis of erysoline (gamma-methylsulphonylbutyl isothiocyanate). Acta Chem Scand8:295–298 [CrossRef]
    [Google Scholar]
  62. Köhler T., Michéa-Hamzehpour M., Henze U., Gotoh N., Curty L. K., Pechère J. C.. 1997; Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa . Mol Microbiol23:345–354 [CrossRef][PubMed]
    [Google Scholar]
  63. Kojima M., Ogawa K.. 1971; Studies on the effects of isothiocyanates and their analogues on microorganisms. J Ferment Technol49:740–746
    [Google Scholar]
  64. Kolm R. H., Danielson U. H., Zhang Y., Talalay P., Mannervik B.. 1995; Isothiocyanates as substrates for human glutathione transferases: structure–activity studies. Biochem J311:453–459[PubMed]
    [Google Scholar]
  65. Koroleva O. A., Gibson T. M., Cramer R., Stain C.. 2010; Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation. Plant J64:456–469 [CrossRef][PubMed]
    [Google Scholar]
  66. Krause G., Holmgren A.. 1991; Substitution of the conserved tryptophan 31 in Escherichia coli thioredoxin by site-directed mutagenesis and structure–function analysis. J Biol Chem266:4056–4066[PubMed]
    [Google Scholar]
  67. Li M., Ni N., Chou H.-T., Lu C.-D., Tai P. C., Wang B.. 2008; Structure-based discovery and experimental verification of novel AI-2 quorum sensing inhibitors against Vibrio harveyi . Chem Med Chem3:1242–1249 [CrossRef][PubMed]
    [Google Scholar]
  68. Li Y., Zhang T., Schwartz S. J., Sun D.. 2011; Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer63:1151–1159 [CrossRef][PubMed]
    [Google Scholar]
  69. Lin C. M., Preston J. F. III, Wei C. I.. 2000; Antibacterial mechanism of allyl isothiocyanate. J Food Prot63:727–734[PubMed]
    [Google Scholar]
  70. Luciano F. B., Holley R. A.. 2009; Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157 : H7. Int J Food Microbiol131:240–245 [CrossRef][PubMed]
    [Google Scholar]
  71. Lund P. A.. 2001; Microbial molecular chaperones. Adv Microb Physiol44:93–140 [CrossRef][PubMed]
    [Google Scholar]
  72. MacGibbon D. B., Beuzenberg E. J.. 1978; Location of glucosinolase in Brevicoryne brassicae and Lipaphis erysimi (Aphididae). N Z J Sci21:389–392
    [Google Scholar]
  73. Martin J. L.. 1995; Thioredoxin—a fold for all reasons. Structure3:245–250 [CrossRef][PubMed]
    [Google Scholar]
  74. Melchini A., Traka M. H.. 2010; Biological profile of erucin: a new promising anticancer agent from cruciferous vegetables. Toxins2:593–612 [CrossRef][PubMed]
    [Google Scholar]
  75. Meyer D. J., Crease D. J., Ketterer B.. 1995; Forward and reverse catalysis and product sequestration by human glutathione S-transferases in the reaction of GSH with dietary aralkyl isothiocyanates. Biochem J306:565–569[PubMed]
    [Google Scholar]
  76. Mi L., Xiao Z., Hood B. L., Dakshanamurthy S., Wang X., Govind S., Conrads T. P., Veenstra T. D., Chung F. L.. 2008; Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem283:22136–22146 [CrossRef][PubMed]
    [Google Scholar]
  77. Mi L., Di Pasqua A. J., Chung F.-L.. 2011; Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis32:1405–1413 [CrossRef][PubMed]
    [Google Scholar]
  78. Nadarajah D., Han J. H., Holley R. A.. 2005; Use of mustard flour to inactivate Escherichia coli O157 : H7 in ground beef under nitrogen flushed packaging. Int J Food Microbiol99:257–267 [CrossRef][PubMed]
    [Google Scholar]
  79. Nagahara N., Matsumura T., Okamoto R., Kajihara Y.. 2009; Protein cysteine modifications: (2) reactivity specificity and topics of medicinal chemistry and protein engineering. Curr Med Chem16:4490–4501 [CrossRef][PubMed]
    [Google Scholar]
  80. Nakamura T., Kawai Y., Kitamoto N., Osawa T., Kato Y.. 2009; Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: plausible transformation of isothiocyanate from thiol to amine. Chem Res Toxicol22:536–542 [CrossRef][PubMed]
    [Google Scholar]
  81. Newton G. L., Arnold K., Price M. S., Sherrill C., Delcardayre S. B., Aharonowitz Y., Cohen G., Davies J., Fahey R. C., Davis C.. 1996; Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol178:1990–1995[PubMed]
    [Google Scholar]
  82. Newton G. L., Fahey R. C., Rawat M.. 2012; Detoxification of toxins by bacillithiol in Staphylococcus aureus . Microbiology158:1117–1126 [CrossRef][PubMed]
    [Google Scholar]
  83. Nowicki D., Maciąg-Dorszyńska M., Kobiela W., Herman-Antosiewicz A., Węgrzyn A., Szalewska-Pałasz A., Węgrzyn G.. 2014; Phenethyl isothiocyanate inhibits Shiga toxin production in enterohemorrhagic Escherichia coli by stringent response induction. Antimicrob Agents Chemother58:2304–2315 [CrossRef][PubMed]
    [Google Scholar]
  84. Nugon-Baudon L., Rabot S.. 1994; Glucosinolates and glucosinolate derivatives: implications for protection against chemical carcinogenesis. Nutr Res Rev7:205–231 [CrossRef][PubMed]
    [Google Scholar]
  85. Ohtsuru M., Tsuruo I., Hata T.. 1969; Studies on fungous myrosinase. Part II. Effects of various reagents on its enzymatic activities. Agric Biol Chem33:1315–1319 [CrossRef]
    [Google Scholar]
  86. Palaniappan K., Holley R. A.. 2010; Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol140:164–168 [CrossRef][PubMed]
    [Google Scholar]
  87. Park I. K., Choi K. S., Kim D. H., Choi I. H., Kim L. S., Bak W. C., Choi J. W., Shin S. C.. 2006; Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Manag Sci62:723–728 [CrossRef][PubMed]
    [Google Scholar]
  88. Peng H., Cheng Y., Ni N., Li M., Choudhary G., Chou H. T., Lu C. D., Tai P. C., Wang B.. 2009; Synthesis and evaluation of new antagonists of bacterial quorum sensing in Vibrio harveyi . Chem Med Chem4:1457–1468 [CrossRef][PubMed]
    [Google Scholar]
  89. Podhradský D., Drobnica L., Kristian P.. 1979; Reactions of cysteine, its derivatives, glutathione coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia35:154–155 [CrossRef][PubMed]
    [Google Scholar]
  90. Roos G., Foloppe N., Van Laer K., Wyns L., Nilsson L., Geerlings P., Messens J.. 2009; How thioredoxin dissociates its mixed disulfide. PLOS Comput Biol5:e1000461 [CrossRef][PubMed]
    [Google Scholar]
  91. Rosa E. A., Rodriguez P. M.. 1999; Towards a more sustainable agriculture system: the effect of glucosinolates on the control of soil-borne diseases. J Hortic Sci Biotechnol74:667–674
    [Google Scholar]
  92. Saavedra M. J., Borges A., Dias C., Aires A., Bennett R. N., Rosa E. S., Simões M.. 2010; Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med Chem6:174–183 [CrossRef][PubMed]
    [Google Scholar]
  93. Sarkar R., Mukherjee S., Biswas J., Roy M.. 2012; Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem Biophys Res Commun427:80–85 [CrossRef][PubMed]
    [Google Scholar]
  94. Schreiner R. P., Koide R. T.. 1993; Mustard, mustard oils and mycorrhizas. New Phytol123:107–113 [CrossRef]
    [Google Scholar]
  95. Sellam A., Poupard P., Simoneau P.. 2006; Molecular cloning of AbGst1 encoding a glutathione transferase differentially expressed during exposure of Alternaria brassicicola to isothiocyanates. FEMS Microbiol Lett258:241–249 [CrossRef][PubMed]
    [Google Scholar]
  96. Sheehan D., Meade G., Foley V. M., Dowd C. A.. 2001; Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J360:1–16 [CrossRef][PubMed]
    [Google Scholar]
  97. Shin J., Harte B., Ryser E., Selke S.. 2010; Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens. J Food Sci75:M65–M71 [CrossRef][PubMed]
    [Google Scholar]
  98. Singh S. V., Singh K.. 2012; Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis33:1833–1842 [CrossRef][PubMed]
    [Google Scholar]
  99. Snyder G. H., Cennerazzo M. J., Karalis A. J., Locey D.. 1981; Electrostatic influence of local cysteine environments on disulfide exchange kinetics. Biochemistry20:6509–6519 [CrossRef][PubMed]
    [Google Scholar]
  100. Sofrata A., Santangelo E. M., Azeem M., Borg-Karlson A. K., Gustafsson A., Pütsep K.. 2011; Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS ONE6:e23045 [CrossRef][PubMed]
    [Google Scholar]
  101. Tajima H., Kimoto H., Taketo Y., Taketo A.. 1998; Effects of synthetic hydroxy isothiocyanates on microbial systems. Biosci Biotechnol Biochem62:491–495 [CrossRef][PubMed]
    [Google Scholar]
  102. Tajima H., Kimoto H., Taketo A.. 2001; Specific antimicrobial synergism of synthetic hydroxy isothiocyanates with aminoglycoside antibiotics. Biosci Biotechnol Biochem65:1886–1888 [CrossRef][PubMed]
    [Google Scholar]
  103. Tajima H., Kimoto H., Taketo A.. 2003; Paradoxical effect of synthetic hydroxy isothiocyanates on antimicrobial action of aminoglycosides. Biosci Biotechnol Biochem67:1844–1846 [CrossRef][PubMed]
    [Google Scholar]
  104. Tani N., Ohtsuru M., Hata T.. 1974a; Isolation of myrosinase producing microorganism. Agric Biol Chem38:1617–1622 [CrossRef]
    [Google Scholar]
  105. Tani N., Ohtsuru M., Hata T.. 1974b; Purification and general characteristics of bacterial myrosinase produced by Enterobacter cloacae . Agric Biol Chem38:1623–1630 [CrossRef]
    [Google Scholar]
  106. Tanito M., Masutani H., Kim Y. C., Nishikawa M., Ohira A., Yodoi J.. 2005; Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci46:979–987 [CrossRef][PubMed]
    [Google Scholar]
  107. Tate S. S., Meister A.. 1981; γ-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem39:357–368 [CrossRef][PubMed]
    [Google Scholar]
  108. Tierens K. F., Thomma B. P., Brouwer M., Schmidt J., Kistner K., Porzel A., Mauch-Mani B., Cammue B. P., Broekaert W. F.. 2001; Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol125:1688–1699 [CrossRef][PubMed]
    [Google Scholar]
  109. Toledano M. B., Kumar C., Le Moan N., Spector D., Tacnet F.. 2007; The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett581:3598–3607 [CrossRef][PubMed]
    [Google Scholar]
  110. Uda Y., Matsuoka H., Kumagami H., Shims H., Meede Y.. 1993; Stability and antimicrobial property of 4-methylthio-8-butenyl isothiocyanate, the pungent principle in radish. Nippon Shokuhin Kogyo Gakkaishi40:743–746[CrossRef]
    [Google Scholar]
  111. Wiktelius E., Stenberg G.. 2007; Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem J406:115–123 [CrossRef][PubMed]
    [Google Scholar]
  112. Wilson E. A., Ennahar S., Marchioni E., Bergaentzlé M., Bindler F.. 2012; Improvement in determination of isothiocyanates using high-temperature reversed-phase HPLC. J Sep Sci35:2026–2031 [CrossRef][PubMed]
    [Google Scholar]
  113. Yamasaki M., Igimi S., Katayama Y., Yamamoto S., Amano F.. 2004; Identification of an oxidative stress-sensitive protein from Campylobacter jejuni, homologous to rubredoxin oxidoreductase/rubrerythrin. FEMS Microbiol Lett235:57–63 [CrossRef][PubMed]
    [Google Scholar]
  114. Ye L., Zhang Y.. 2001; Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Carcinogenesis22:1987–1992 [CrossRef][PubMed]
    [Google Scholar]
  115. Yu E. Y., Pickering I. J., George G. N., Prince R. C.. 2001; In situ observation of the generation of isothiocyanates from sinigrin in horseradish and wasabi. Biochim Biophys Acta1527:156–160 [CrossRef][PubMed]
    [Google Scholar]
  116. Zeller T., Klug G.. 2006; Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften93:259–266 [CrossRef][PubMed]
    [Google Scholar]
  117. Zhang Y.. 2000; Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis21:1175–1182 [CrossRef][PubMed]
    [Google Scholar]
  118. Zhang Y.. 2012; The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis33:2–9 [CrossRef][PubMed]
    [Google Scholar]
  119. Zhang Y., Talalay P.. 1998; Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res58:4632–4639[PubMed]
    [Google Scholar]
  120. Zhang J., Svehlíková V., Bao Y., Howie A. F., Beckett G. J., Williamson G.. 2003; Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis24:497–503 [CrossRef][PubMed]
    [Google Scholar]
  121. Zoetendal E. G., Smith A. H., Sundset M. A., Mackie R. I.. 2008; The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli . Appl Environ Microbiol74:535–539 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082362-0
Loading
/content/journal/micro/10.1099/mic.0.082362-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error