1887

Abstract

Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in genomes is ongoing, the functions of only a limited number of chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081968-0
2014-12-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2661.html?itemId=/content/journal/micro/10.1099/mic.0.081968-0&mimeType=html&fmt=ahah

References

  1. Alexander R. P., Zhulin I. B..( 2007;). Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci U S A104:2885–2890 [CrossRef][PubMed]
    [Google Scholar]
  2. Alexandre G..( 2010;). Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology156:2283–2293 [CrossRef][PubMed]
    [Google Scholar]
  3. Alvarez-Ortega C., Harwood C. S..( 2007;). Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol73:7793–7795 [CrossRef][PubMed]
    [Google Scholar]
  4. Anantharaman V., Aravind L..( 2000;). Cache – a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci25:535–537 [CrossRef][PubMed]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K..(editors) ( 1993;). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Bergthorsson U., Roth J. R..( 2005;). Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol187:400–403 [CrossRef][PubMed]
    [Google Scholar]
  7. Cheung J., Hendrickson W. A..( 2010;). Sensor domains of two-component regulatory systems. Curr Opin Microbiol13:116–123 [CrossRef][PubMed]
    [Google Scholar]
  8. Davis R. W., Botstein D., Roth J. R..( 1980;). Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  9. Di Stefano M., Conforti L..( 2013;). Diversification of NAD biological role: the importance of location. FEBS J280:4711–4728 [CrossRef][PubMed]
    [Google Scholar]
  10. Ditty J. L., Williams K. M., Keller M. M., Chen G. Y., Liu X., Parales R. E..( 2013;). Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT. Biochem Mol Biol Educ41:16–23 [CrossRef][PubMed]
    [Google Scholar]
  11. Fetzner S..( 1998;). Bacterial degradatoin of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol49:237–250 [CrossRef]
    [Google Scholar]
  12. Figurski D. H., Helinski D. R..( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A76:1648–1652 [CrossRef][PubMed]
    [Google Scholar]
  13. Finette B. A., Subramanian V., Gibson D. T..( 1984;). Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol160:1003–1009[PubMed]
    [Google Scholar]
  14. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L..& other authors ( 2014;). Pfam: the protein families database. Nucleic Acids Res42:Database issueD222–D230 [CrossRef][PubMed]
    [Google Scholar]
  15. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J..( 1970;). Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry9:1626–1630 [CrossRef][PubMed]
    [Google Scholar]
  16. Grimm A. C., Harwood C. S..( 1997;). Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol63:4111–4115[PubMed]
    [Google Scholar]
  17. Grimm A. C., Harwood C. S..( 1999;). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol181:3310–3316[PubMed]
    [Google Scholar]
  18. Harwood C. S., Nichols N. N., Kim M.-K., Ditty J. L., Parales R. E..( 1994;). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol176:6479–6488[PubMed]
    [Google Scholar]
  19. Hazelbauer G. L., Falke J. J., Parkinson J. S..( 2008;). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci33:9–19 [CrossRef][PubMed]
    [Google Scholar]
  20. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P..( 1998;). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86 [CrossRef][PubMed]
    [Google Scholar]
  21. Iwaki H., Muraki T., Ishihara S., Hasegawa Y., Rankin K. N., Sulea T., Boyd J., Lau P. C. K..( 2007;). Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol189:3502–3514 [CrossRef][PubMed]
    [Google Scholar]
  22. Jiménez J. I., Canales A., Jiménez-Barbero J., Ginalski K., Rychlewski L., García J. L., Díaz E..( 2008;). Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci U S A105:11329–11334 [CrossRef][PubMed]
    [Google Scholar]
  23. Jiménez J. I., Nogales J., García J. L., Díaz E..( 2010;). A genomic view of the catabolism of aromatic compounds in Pseudomonas. Handbook of Hydrocarbon and Lipid Microbiology1297–1554 Timmis K. N.. Berlin: Springer; [CrossRef]
    [Google Scholar]
  24. Jiménez J. I., Juárez J. F., García J. L., Díaz E..( 2011;). A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. Environ Microbiol13:1718–1732 [CrossRef][PubMed]
    [Google Scholar]
  25. Kaiser J. P., Feng Y., Bollag J. M..( 1996;). Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev60:483–498[PubMed]
    [Google Scholar]
  26. Kato J., Kim H.-E., Takiguchi N., Kuroda A., Ohtake H..( 2008;). Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng106:1–7 [CrossRef][PubMed]
    [Google Scholar]
  27. Keen N. T., Tamaki S., Kobayashi D., Trollinger D..( 1988;). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene70:191–197 [CrossRef][PubMed]
    [Google Scholar]
  28. Lacal J., García-Fontana C., Muñoz-Martínez F., Ramos J. L., Krell T..( 2010;). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol12:2873–2884 [CrossRef][PubMed]
    [Google Scholar]
  29. Lacal J., Muñoz-Martínez F., Reyes-Darías J. A., Duque E., Matilla M., Segura A., Calvo J. J., Jímenez-Sánchez C., Krell T., Ramos J. L..( 2011;). Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol13:1733–1744 [CrossRef][PubMed]
    [Google Scholar]
  30. Li M., Hazelbauer G. L..( 2006;). The carboxyl-terminal linker is important for chemoreceptor function. Mol Microbiol60:469–479 [CrossRef][PubMed]
    [Google Scholar]
  31. Liu, X.( 2009;). Chemotaxis to pyrimidines and s-triazines in Pseudomonas and Escherichia coli. University of California; Davis, CA, USA:
  32. Liu X., Wood P. L., Parales J. V., Parales R. E..( 2009;). Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J Bacteriol191:2909–2916 [CrossRef][PubMed]
    [Google Scholar]
  33. Luu R. A., Schneider B. J., Ho C. C., Nesteryuk V., Ngwesse S. E., Liu X., Parales J. V., Ditty J. L., Parales R. E..( 2013;). Taxis of Pseudomonas putida F1 toward phenylacetic acid is by mediated by the energy taxis receptor Aer2. Appl Environ Microbiol79:2416–2423 [CrossRef][PubMed]
    [Google Scholar]
  34. Oku S., Komatsu A., Tajima T., Nakashimada Y., Kato J..( 2012;). Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ27:462–469 [CrossRef][PubMed]
    [Google Scholar]
  35. Parales R. E., Ditty J. L., Harwood C. S..( 2000;). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol66:4098–4104 [CrossRef][PubMed]
    [Google Scholar]
  36. Parales R. E., Ferrandez A., Harwood C. S..( 2004;). Chemotaxis in Pseudomonads. Pseudomonas. Volume I: Genomics, Life Style and Molecular Architecture793–815 Ramos J.-L.. New York: Kluwer; [CrossRef]
    [Google Scholar]
  37. Parales R. E., Luu R. A., Chen G. Y., Liu X., Wu V., Lin P., Hughes J. G., Nesteryuk V., Parales J. V., Ditty J. L..( 2013;). Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology159:1086–1096 [CrossRef][PubMed]
    [Google Scholar]
  38. Parkinson J. S..( 2007;). A “bucket of light” for viewing bacterial colonies in soft agar. Methods Enzymol423:432–435 [CrossRef][PubMed]
    [Google Scholar]
  39. Paternoster T., Défago G., Duffy B., Gessler C., Pertot I..( 2010;). Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Int Microbiol13:195–206[PubMed]
    [Google Scholar]
  40. Prunier A.-L., Schuch R., Fernández R. E., Maurelli A. T..( 2007;). Genetic structure of the nadA and nadB antivirulence loci in Shigella spp.. J Bacteriol189:6482–6486 [CrossRef][PubMed]
    [Google Scholar]
  41. Sambrook J., Fritch E. F., Maniatis T..( 1989;). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sampedro I., Parales R. E., Krell T., Hill J. E..( 2014;). Pseudomonas chemotaxis. FEMS Microbiol Rev [CrossRef][PubMed]
    [Google Scholar]
  43. Sarand I., Osterberg S., Holmqvist S., Holmfeldt P., Skärfstad E., Parales R. E., Shingler V..( 2008;). Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol10:1320–1334 [CrossRef][PubMed]
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A..( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology (N Y)1:784–789 [CrossRef]
    [Google Scholar]
  45. Sorci L., Blaby I. K., Rodionova I. A., De Ingeniis J., Tkachenko S., de Crécy-Lagard V., Osterman A. L..( 2013;). Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci. J Bacteriol195:726–732 [CrossRef][PubMed]
    [Google Scholar]
  46. Stanier R. Y., Palleroni N. J., Doudoroff M..( 1966;). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol43:159–271 [CrossRef][PubMed]
    [Google Scholar]
  47. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J..& other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  48. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H..( 1997;). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology143:3223–3229 [CrossRef][PubMed]
    [Google Scholar]
  49. Tang H., Yao Y., Wang L., Yu H., Ren Y., Wu G., Xu P..( 2012;). Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep2:377 [CrossRef][PubMed]
    [Google Scholar]
  50. Vangnai A. S., Takeuchi K., Oku S., Kataoka N., Nitisakulkan T., Tajima T., Kato J..( 2013;). Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol79:7241–7248 [CrossRef][PubMed]
    [Google Scholar]
  51. Wadhams G. H., Armitage J. P..( 2004;). Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol5:1024–1037 [CrossRef][PubMed]
    [Google Scholar]
  52. Webb B. A., Hildreth S., Helm R. F., Scharf B. E..( 2014;). Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol80:3404–3415 [CrossRef][PubMed]
    [Google Scholar]
  53. White A. K., Metcalf W. W..( 2004;). The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the Phoregulon. J Bacteriol186:5876–5882 [CrossRef][PubMed]
    [Google Scholar]
  54. Zhang Z., Hendrickson W. A..( 2010;). Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol400:335–353 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081968-0
Loading
/content/journal/micro/10.1099/mic.0.081968-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error