1887

Abstract

Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in genomes is ongoing, the functions of only a limited number of chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081968-0
2014-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2661.html?itemId=/content/journal/micro/10.1099/mic.0.081968-0&mimeType=html&fmt=ahah

References

  1. Alexander R. P., Zhulin I. B.. ( 2007;). Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. . Proc Natl Acad Sci U S A 104:, 2885–2890. [CrossRef][PubMed]
    [Google Scholar]
  2. Alexandre G.. ( 2010;). Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. . Microbiology 156:, 2283–2293. [CrossRef][PubMed]
    [Google Scholar]
  3. Alvarez-Ortega C., Harwood C. S.. ( 2007;). Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. . Appl Environ Microbiol 73:, 7793–7795. [CrossRef][PubMed]
    [Google Scholar]
  4. Anantharaman V., Aravind L.. ( 2000;). Cache – a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. . Trends Biochem Sci 25:, 535–537. [CrossRef][PubMed]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1993;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  6. Bergthorsson U., Roth J. R.. ( 2005;). Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. . J Bacteriol 187:, 400–403. [CrossRef][PubMed]
    [Google Scholar]
  7. Cheung J., Hendrickson W. A.. ( 2010;). Sensor domains of two-component regulatory systems. . Curr Opin Microbiol 13:, 116–123. [CrossRef][PubMed]
    [Google Scholar]
  8. Davis R. W., Botstein D., Roth J. R.. ( 1980;). Advanced Bacterial Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  9. Di Stefano M., Conforti L.. ( 2013;). Diversification of NAD biological role: the importance of location. . FEBS J 280:, 4711–4728. [CrossRef][PubMed]
    [Google Scholar]
  10. Ditty J. L., Williams K. M., Keller M. M., Chen G. Y., Liu X., Parales R. E.. ( 2013;). Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT. . Biochem Mol Biol Educ 41:, 16–23. [CrossRef][PubMed]
    [Google Scholar]
  11. Fetzner S.. ( 1998;). Bacterial degradatoin of pyridine, indole, quinoline, and their derivatives under different redox conditions. . Appl Microbiol Biotechnol 49:, 237–250. [CrossRef]
    [Google Scholar]
  12. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci U S A 76:, 1648–1652. [CrossRef][PubMed]
    [Google Scholar]
  13. Finette B. A., Subramanian V., Gibson D. T.. ( 1984;). Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. . J Bacteriol 160:, 1003–1009.[PubMed]
    [Google Scholar]
  14. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L.. & other authors ( 2014;). Pfam: the protein families database. . Nucleic Acids Res 42: (Database issue), D222–D230. [CrossRef][PubMed]
    [Google Scholar]
  15. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J.. ( 1970;). Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. . Biochemistry 9:, 1626–1630. [CrossRef][PubMed]
    [Google Scholar]
  16. Grimm A. C., Harwood C. S.. ( 1997;). Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. . Appl Environ Microbiol 63:, 4111–4115.[PubMed]
    [Google Scholar]
  17. Grimm A. C., Harwood C. S.. ( 1999;). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. . J Bacteriol 181:, 3310–3316.[PubMed]
    [Google Scholar]
  18. Harwood C. S., Nichols N. N., Kim M.-K., Ditty J. L., Parales R. E.. ( 1994;). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. . J Bacteriol 176:, 6479–6488.[PubMed]
    [Google Scholar]
  19. Hazelbauer G. L., Falke J. J., Parkinson J. S.. ( 2008;). Bacterial chemoreceptors: high-performance signaling in networked arrays. . Trends Biochem Sci 33:, 9–19. [CrossRef][PubMed]
    [Google Scholar]
  20. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. . Gene 212:, 77–86. [CrossRef][PubMed]
    [Google Scholar]
  21. Iwaki H., Muraki T., Ishihara S., Hasegawa Y., Rankin K. N., Sulea T., Boyd J., Lau P. C. K.. ( 2007;). Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. . J Bacteriol 189:, 3502–3514. [CrossRef][PubMed]
    [Google Scholar]
  22. Jiménez J. I., Canales A., Jiménez-Barbero J., Ginalski K., Rychlewski L., García J. L., Díaz E.. ( 2008;). Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. . Proc Natl Acad Sci U S A 105:, 11329–11334. [CrossRef][PubMed]
    [Google Scholar]
  23. Jiménez J. I., Nogales J., García J. L., Díaz E.. ( 2010;). A genomic view of the catabolism of aromatic compounds in Pseudomonas. . In Handbook of Hydrocarbon and Lipid Microbiology, pp. 1297–1554. Edited by Timmis K. N... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  24. Jiménez J. I., Juárez J. F., García J. L., Díaz E.. ( 2011;). A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. . Environ Microbiol 13:, 1718–1732. [CrossRef][PubMed]
    [Google Scholar]
  25. Kaiser J. P., Feng Y., Bollag J. M.. ( 1996;). Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. . Microbiol Rev 60:, 483–498.[PubMed]
    [Google Scholar]
  26. Kato J., Kim H.-E., Takiguchi N., Kuroda A., Ohtake H.. ( 2008;). Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. . J Biosci Bioeng 106:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  27. Keen N. T., Tamaki S., Kobayashi D., Trollinger D.. ( 1988;). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. . Gene 70:, 191–197. [CrossRef][PubMed]
    [Google Scholar]
  28. Lacal J., García-Fontana C., Muñoz-Martínez F., Ramos J. L., Krell T.. ( 2010;). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. . Environ Microbiol 12:, 2873–2884. [CrossRef][PubMed]
    [Google Scholar]
  29. Lacal J., Muñoz-Martínez F., Reyes-Darías J. A., Duque E., Matilla M., Segura A., Calvo J. J., Jímenez-Sánchez C., Krell T., Ramos J. L.. ( 2011;). Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. . Environ Microbiol 13:, 1733–1744. [CrossRef][PubMed]
    [Google Scholar]
  30. Li M., Hazelbauer G. L.. ( 2006;). The carboxyl-terminal linker is important for chemoreceptor function. . Mol Microbiol 60:, 469–479. [CrossRef][PubMed]
    [Google Scholar]
  31. Liu, X. ( 2009;). Chemotaxis to pyrimidines and s-triazines in Pseudomonas and Escherichia coli. . PhD dissertation, University of California;, Davis, CA, USA:.
  32. Liu X., Wood P. L., Parales J. V., Parales R. E.. ( 2009;). Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. . J Bacteriol 191:, 2909–2916. [CrossRef][PubMed]
    [Google Scholar]
  33. Luu R. A., Schneider B. J., Ho C. C., Nesteryuk V., Ngwesse S. E., Liu X., Parales J. V., Ditty J. L., Parales R. E.. ( 2013;). Taxis of Pseudomonas putida F1 toward phenylacetic acid is by mediated by the energy taxis receptor Aer2. . Appl Environ Microbiol 79:, 2416–2423. [CrossRef][PubMed]
    [Google Scholar]
  34. Oku S., Komatsu A., Tajima T., Nakashimada Y., Kato J.. ( 2012;). Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. . Microbes Environ 27:, 462–469. [CrossRef][PubMed]
    [Google Scholar]
  35. Parales R. E., Ditty J. L., Harwood C. S.. ( 2000;). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. . Appl Environ Microbiol 66:, 4098–4104. [CrossRef][PubMed]
    [Google Scholar]
  36. Parales R. E., Ferrandez A., Harwood C. S.. ( 2004;). Chemotaxis in Pseudomonads. . In Pseudomonas. Volume I: Genomics, Life Style and Molecular Architecture, pp. 793–815. Edited by Ramos J.-L... New York:: Kluwer;. [CrossRef]
    [Google Scholar]
  37. Parales R. E., Luu R. A., Chen G. Y., Liu X., Wu V., Lin P., Hughes J. G., Nesteryuk V., Parales J. V., Ditty J. L.. ( 2013;). Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. . Microbiology 159:, 1086–1096. [CrossRef][PubMed]
    [Google Scholar]
  38. Parkinson J. S.. ( 2007;). A “bucket of light” for viewing bacterial colonies in soft agar. . Methods Enzymol 423:, 432–435. [CrossRef][PubMed]
    [Google Scholar]
  39. Paternoster T., Défago G., Duffy B., Gessler C., Pertot I.. ( 2010;). Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. . Int Microbiol 13:, 195–206.[PubMed]
    [Google Scholar]
  40. Prunier A.-L., Schuch R., Fernández R. E., Maurelli A. T.. ( 2007;). Genetic structure of the nadA and nadB antivirulence loci in Shigella spp.. J Bacteriol 189:, 6482–6486. [CrossRef][PubMed]
    [Google Scholar]
  41. Sambrook J., Fritch E. F., Maniatis T.. ( 1989;). Molecular Cloning: A Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  42. Sampedro I., Parales R. E., Krell T., Hill J. E.. ( 2014;). Pseudomonas chemotaxis. . FEMS Microbiol Rev doi:10.1111/1574-6976.12081 [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  43. Sarand I., Osterberg S., Holmqvist S., Holmfeldt P., Skärfstad E., Parales R. E., Shingler V.. ( 2008;). Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. . Environ Microbiol 10:, 1320–1334. [CrossRef][PubMed]
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. . Biotechnology (N Y) 1:, 784–789. [CrossRef]
    [Google Scholar]
  45. Sorci L., Blaby I. K., Rodionova I. A., De Ingeniis J., Tkachenko S., de Crécy-Lagard V., Osterman A. L.. ( 2013;). Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci. . J Bacteriol 195:, 726–732. [CrossRef][PubMed]
    [Google Scholar]
  46. Stanier R. Y., Palleroni N. J., Doudoroff M.. ( 1966;). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef][PubMed]
    [Google Scholar]
  47. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef][PubMed]
    [Google Scholar]
  48. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H.. ( 1997;). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. . Microbiology 143:, 3223–3229. [CrossRef][PubMed]
    [Google Scholar]
  49. Tang H., Yao Y., Wang L., Yu H., Ren Y., Wu G., Xu P.. ( 2012;). Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. . Sci Rep 2:, 377. [CrossRef][PubMed]
    [Google Scholar]
  50. Vangnai A. S., Takeuchi K., Oku S., Kataoka N., Nitisakulkan T., Tajima T., Kato J.. ( 2013;). Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. . Appl Environ Microbiol 79:, 7241–7248. [CrossRef][PubMed]
    [Google Scholar]
  51. Wadhams G. H., Armitage J. P.. ( 2004;). Making sense of it all: bacterial chemotaxis. . Nat Rev Mol Cell Biol 5:, 1024–1037. [CrossRef][PubMed]
    [Google Scholar]
  52. Webb B. A., Hildreth S., Helm R. F., Scharf B. E.. ( 2014;). Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. . Appl Environ Microbiol 80:, 3404–3415. [CrossRef][PubMed]
    [Google Scholar]
  53. White A. K., Metcalf W. W.. ( 2004;). The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the Phoregulon. . J Bacteriol 186:, 5876–5882. [CrossRef][PubMed]
    [Google Scholar]
  54. Zhang Z., Hendrickson W. A.. ( 2010;). Structural characterization of the predominant family of histidine kinase sensor domains. . J Mol Biol 400:, 335–353. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081968-0
Loading
/content/journal/micro/10.1099/mic.0.081968-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error