1887

Abstract

The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium sp. PCC 7120. Here, ORF was heterologously expressed in , and its purified product was characterized. Enzyme activity assays revealed that All1371 is an active polyphosphate glucokinase that can phosphorylate both glucose and mannose in the presence of divalent cations . Unlike many other polyphosphate glucokinases, for which nucleoside triphosphates (e.g. ATP or GTP) act as phosphoryl group donors, All1371 required polyphosphate to confer its enzymic activity. The enzymic reaction catalysed by All1371 followed classical Michaelis–Menten kinetics, with  = 48.2 s at pH 7.5 and 28 °C and  = 1.76 µM and 0.118 mM for polyphosphate and glucose, respectively. Its reaction mechanism was identified as a particular multi-substrate mechanism called the ‘bi-bi ping-pong mechanism’. Bioinformatic analyses revealed numerous polyphosphate-dependent glucokinases in heterocyst-forming cyanobacteria. Viability of an sp. PCC 7120 mutant strain lacking was impaired under nitrogen-fixing conditions. GFP promoter studies indicate expression of under combined nitrogen deprivation. All1371 might play a substantial role in sp. PCC 7120 under these conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081836-0
2014-12-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2807.html?itemId=/content/journal/micro/10.1099/mic.0.081836-0&mimeType=html&fmt=ahah

References

  1. Achbergerová L., Nahálka J..( 2011;). Polyphosphate – an ancient energy source and active metabolic regulator. Microb Cell Fact10:63 [CrossRef][PubMed]
    [Google Scholar]
  2. Adams D. G., Carr N. G., Wilcox M..( 1981;). The developmental biology of heterocyst and akinete formation in cyanobacteria. Crit Rev Microbiol9:45–100 [CrossRef][PubMed]
    [Google Scholar]
  3. Ahn K., Kornberg A..( 1990;). Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem265:11734–11739[PubMed]
    [Google Scholar]
  4. Akiyama M., Crooke E., Kornberg A..( 1993;). An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem268:633–639[PubMed]
    [Google Scholar]
  5. Allen M. B., Arnon D. I..( 1955;). Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm.. Plant Physiol30:366–372 [CrossRef][PubMed]
    [Google Scholar]
  6. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  7. Arora K. K., Filburn C. R., Pedersen P. L..( 1991;). Glucose phosphorylation. Site-directed mutations which impair the catalytic function of hexokinase. J Biol Chem266:5359–5362[PubMed]
    [Google Scholar]
  8. Baier, A.( 2013;). Untersuchungen zum stickstoffinduzierten Phycobilisomenabbau - NblA, ein kleines Protein mit großer Wirkung. Humboldt-Universität zu Berlin;
  9. Beadle B. M., Baase W. A., Wilson D. B., Gilkes N. R., Shoichet B. K..( 1999;). Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry38:2570–2576 [CrossRef][PubMed]
    [Google Scholar]
  10. Bensadoun A., Weinstein D..( 1976;). Assay of proteins in the presence of interfering materials. Anal Biochem70:241–250 [CrossRef][PubMed]
    [Google Scholar]
  11. Berman-Frank I., Lundgren P., Falkowski P..( 2003;). Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol154:157–164 [CrossRef][PubMed]
    [Google Scholar]
  12. Bertani G..( 1951;). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol62:293–300[PubMed]
    [Google Scholar]
  13. Black T. A., Wolk C. P..( 1994;). Analysis of a Het- mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bacteriol176:2282–2292[PubMed]
    [Google Scholar]
  14. Black T. A., Cai Y., Wolk C. P..( 1993;). Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol9:77–84 [CrossRef][PubMed]
    [Google Scholar]
  15. Cai Y. P., Wolk C. P..( 1990;). Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol172:3138–3145[PubMed]
    [Google Scholar]
  16. Castenholz R. W..( 1988;). Culturing methods for cyanobacteria. Methods Enzymol167:68–93 [CrossRef]
    [Google Scholar]
  17. Cleland W. W..( 1963;). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta67:188–196 [CrossRef][PubMed]
    [Google Scholar]
  18. Curatti L., Flores E., Salerno G..( 2002;). Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp.. FEBS Lett513:175–178 [CrossRef][PubMed]
    [Google Scholar]
  19. Dagan T., Roettger M., Stucken K., Landan G., Koch R., Major P., Gould S. B., Goremykin V. V., Rippka R..& other authors ( 2013;). Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol5:31–44 [CrossRef][PubMed]
    [Google Scholar]
  20. de Marsac N. T., Houmard J..( 1988;). Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol167318–328 [CrossRef]
    [Google Scholar]
  21. Elhai J., Wolk C. P..( 1988a;). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol167:747–754 [CrossRef][PubMed]
    [Google Scholar]
  22. Elhai J., Wolk C. P..( 1988b;). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene68:119–138 [CrossRef][PubMed]
    [Google Scholar]
  23. Fewer D., Friedl T., Büdel B..( 2002;). Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol23:82–90 [CrossRef][PubMed]
    [Google Scholar]
  24. Flaherty B. L., Van Nieuwerburgh F., Head S. R., Golden J. W..( 2011;). Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics12:332 [CrossRef][PubMed]
    [Google Scholar]
  25. Flores E., Herrero A..( 2010;). Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol8:39–50 [CrossRef][PubMed]
    [Google Scholar]
  26. Golubic S., Hernandez-Marine M., Hoffmann L..( 1996;). Developmental aspects of branching in filamentous Cyanophyta/Cyanobacteria. Arch Hydrobiol Suppl Algol Stud83:303–329
    [Google Scholar]
  27. Gouet P., Courcelle E., Stuart D. I., Métoz F..( 1999;). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics15:305–308 [CrossRef][PubMed]
    [Google Scholar]
  28. Harold F. M..( 1966;). Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev30:772–794[PubMed]
    [Google Scholar]
  29. Hill S., Kennedy C., Kavanagh E., Goldberg R. B., Hanau R..( 1981;). Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. pneumoniae. Nature290:424–426 [CrossRef][PubMed]
    [Google Scholar]
  30. Howard J. B., Rees D. C..( 1996;). Structural basis of biological nitrogen fixation. Chem Rev96:2965–2982 [CrossRef][PubMed]
    [Google Scholar]
  31. Hsieh P. C., Shenoy B. C., Jentoft J. E., Phillips N. F..( 1993;). Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr Purif4:76–84 [CrossRef][PubMed]
    [Google Scholar]
  32. Hsieh P. C., Kowalczyk T. H., Phillips N. F..( 1996a;). Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis. Biochemistry35:9772–9781 [CrossRef][PubMed]
    [Google Scholar]
  33. Hsieh P. C., Shenoy B. C., Samols D., Phillips N. F..( 1996b;). Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem271:4909–4915 [CrossRef][PubMed]
    [Google Scholar]
  34. Imriskova I., Arreguín-Espinosa R., Guzmán S., Rodriguez-Sanoja R., Langley E., Sanchez S..( 2005;). Biochemical characterization of the glucose kinase from Streptomyces coelicolor compared to Streptomyces peucetius var. caesius. Res Microbiol156:361–366 [CrossRef][PubMed]
    [Google Scholar]
  35. Jensen T. E..( 1968;). Electron microscopy of polyphosphate bodies in a blue-green alga Nostoc pruniforme. Arch Mikrobiol62:144–152 [CrossRef]
    [Google Scholar]
  36. Kornberg A..( 1995;). Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol177:491–496[PubMed]
    [Google Scholar]
  37. Kornberg A., Kornberg S. R., Simms E. S..( 1956;). Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta20:215–227 [CrossRef][PubMed]
    [Google Scholar]
  38. Kornberg A., Rao N. N., Ault-Riché D..( 1999;). Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem68:89–125 [CrossRef][PubMed]
    [Google Scholar]
  39. Kumar K., Mella-Herrera R. A., Golden J. W..( 2010;). Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol2:a000315 [CrossRef][PubMed]
    [Google Scholar]
  40. Laemmli U. K..( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  41. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A..& other authors ( 2007;). clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  42. Liao H., Myung S., Zhang Y. H..( 2012;). One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl Microbiol Biotechnol93:1109–1117 [CrossRef][PubMed]
    [Google Scholar]
  43. Lichko L. P., Kulakovskaya T. V., Kulaev I. S..( 2010;). Properties of partially purified endopolyphosphatase of the yeast Saccharomyces cerevisiae. Biochemistry (Mosc)75:1404–1407 [CrossRef][PubMed]
    [Google Scholar]
  44. Lindner S. N., Knebel S., Pallerla S. R., Schoberth S. M., Wendisch V. F..( 2010;). Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol87:703–713 [CrossRef][PubMed]
    [Google Scholar]
  45. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J..( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  46. Maldener I., Muro-Pastor A. M..( 2010;). Cyanobacterial heterocysts. eLS Chichester: Wiley; [CrossRef]
    [Google Scholar]
  47. Markowitz V. M., Chen I. M., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J..& other authors ( 2012;). IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res40:Database issueD115–D122 [CrossRef][PubMed]
    [Google Scholar]
  48. Meyer A..( 1902;). Orientierende Untersuchungen über Verbreitung, Morphologie, und Chemie des Volutins. Bot Zeitschr62:113–152
    [Google Scholar]
  49. Mitschke J., Vioque A., Haas F., Hess W. R., Muro-Pastor A. M..( 2011;). Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A108:20130–20135 [CrossRef][PubMed]
    [Google Scholar]
  50. Mitsui A., Kumazawa S., Takahashi A., Ikemoto H., Cao S., Arai T..( 1986;). Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature323:720–722 [CrossRef]
    [Google Scholar]
  51. Mukai T., Kawai S., Matsukawa H., Matuo Y., Murata K..( 2003;). Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol69:3849–3857 [CrossRef][PubMed]
    [Google Scholar]
  52. Mukai T., Kawai S., Mori S., Mikami B., Murata K..( 2004;). Crystal structure of bacterial inorganic polyphosphate/ATP-glucomannokinase. Insights into kinase evolution. J Biol Chem279:50591–50600 [CrossRef][PubMed]
    [Google Scholar]
  53. Nakao M., Okamoto S., Kohara M., Fujishiro T., Fujisawa T., Sato S., Tabata S., Kaneko T., Nakamura Y..( 2010;). CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res38:Database issueD379–D381 [CrossRef][PubMed]
    [Google Scholar]
  54. Nürnberg D. J., Mariscal V., Parker J., Mastroianni G., Flores E., Mullineaux C. W..( 2014;). Branching and intercellular communication in the Section V cyanobacterium Mastigocladus laminosus, a complex multicellular prokaryote. Mol Microbiol91:935–949 [CrossRef][PubMed]
    [Google Scholar]
  55. Pepin C. A., Wood H. G..( 1986;). Polyphosphate glucokinase from Propionibacterium shermanii. Kinetics and demonstration that the mechanism involves both processive and nonprocessive type reactions. J Biol Chem261:4476–4480[PubMed]
    [Google Scholar]
  56. Phillips N. F., Horn P. J., Wood H. G..( 1993;). The polyphosphate- and ATP-dependent glucokinase from Propionibacterium shermanii: both activities are catalyzed by the same protein. Arch Biochem Biophys300:309–319 [CrossRef][PubMed]
    [Google Scholar]
  57. Phillips N. F., Hsieh P. C., Kowalczyk T. H..( 1999;). Polyphosphate glucokinase. Prog Mol Subcell Biol23:101–125 [CrossRef][PubMed]
    [Google Scholar]
  58. Picossi S., Flores E., Herrero A..( 2014;). ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genomics15:22 [CrossRef][PubMed]
    [Google Scholar]
  59. Rao N. N., Gómez-García M. R., Kornberg A..( 2009;). Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem78:605–647 [CrossRef][PubMed]
    [Google Scholar]
  60. Rashid M. H., Kornberg A..( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A97:4885–4890 [CrossRef][PubMed]
    [Google Scholar]
  61. Rashid M. H., Rao N. N., Kornberg A..( 2000;). Inorganic polyphosphate is required for motility of bacterial pathogens. J Bacteriol182:225–227 [CrossRef][PubMed]
    [Google Scholar]
  62. Remonsellez F., Orell A., Jerez C. A..( 2006;). Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology152:59–66 [CrossRef][PubMed]
    [Google Scholar]
  63. Resnick S. M., Zehnder A. J..( 2000;). In vitro ATP regeneration from polyphosphate and AMP by polyphosphate : AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl Environ Microbiol66:2045–2051 [CrossRef][PubMed]
    [Google Scholar]
  64. Rippka R., Waterbury J. B..( 1977;). Synthesis of nitrogenase by non-heterocystous cyanobacteria. FEMS Microbiol Lett2:83–86 [CrossRef]
    [Google Scholar]
  65. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y..( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol111:1–61 [CrossRef]
    [Google Scholar]
  66. Robertson B. R., Tezuka N., Watanabe M. M..( 2001;). Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol51:861–871 [CrossRef][PubMed]
    [Google Scholar]
  67. Scherer P. A., Bochem H. P..( 1983;). Ultrastructural investigation of 12 Methanosarcinae and related species grown on methanol for occurrence of polyphosphatelike inclusions. Can J Microbiol29:1190–1199 [CrossRef]
    [Google Scholar]
  68. Shih P. M., Wu D., Latifi A., Axen S. D., Fewer D. P., Talla E., Calteau A., Cai F., Tandeau de Marsac N..& other authors ( 2013;). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A110:1053–1058 [CrossRef][PubMed]
    [Google Scholar]
  69. Stal L. J..( 1995;). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol131:1–32 [CrossRef]
    [Google Scholar]
  70. Szymona M., Ostrowski W..( 1964;). Inorganic polyphosphate glucokinase of Mycobacterium phlei. Biochim Biophys Acta85:283–295[PubMed]
    [Google Scholar]
  71. Szymona M., Widomski J..( 1974;). A kinetic study on inorganic polyphosphate glucokinase from Mycobacterium tuberculosis H37RA. Physiol Chem Phys6:393–404[PubMed]
    [Google Scholar]
  72. Tanaka S., Lee S. O., Hamaoka K., Kato J., Takiguchi N., Nakamura K., Ohtake H., Kuroda A..( 2003;). Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phosphovorus. J Bacteriol185:5654–5656 [CrossRef][PubMed]
    [Google Scholar]
  73. Thompson P. A., Oh H. M., Rhee G. Y..( 1994;). Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J Phycol30:267–273 [CrossRef]
    [Google Scholar]
  74. Toepel J., Welsh E., Summerfield T. C., Pakrasi H. B., Sherman L. A..( 2008;). Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol190:3904–3913 [CrossRef][PubMed]
    [Google Scholar]
  75. Tsutsumi K., Munekata M., Shiba T..( 2000;). Involvement of inorganic polyphosphate in expression of SOS genes. Biochim Biophys Acta1493:73–81 [CrossRef][PubMed]
    [Google Scholar]
  76. Walker P. A., Leong L. E., Ng P. W., Tan S. H., Waller S., Murphy D., Porter A. G..( 1994;). Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Biotechnology (N Y)12:601–605 [CrossRef][PubMed]
    [Google Scholar]
  77. Wilkins M. R., Gasteiger E., Bairoch A., Sanchez J. C., Williams K. L., Appel R. D., Hochstrasser D. F..( 1999;). Protein identification and analysis tools in the ExPASy server. Methods Mol Biol112:531–552[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081836-0
Loading
/content/journal/micro/10.1099/mic.0.081836-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error