1887

Abstract

In contrast to PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium sp. PCC 6803. The standard operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the PCC 7942 clock. Inactivation of this operon in sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light–dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light–dark cycle revealed many differentially regulated genes with known functions in the ΔABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in Δ cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for and mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔABC operon led to a much stronger phenotype under light–dark cycles in sp. PCC 6803 than in sp. PCC 7942.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081695-0
2014-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2538.html?itemId=/content/journal/micro/10.1099/mic.0.081695-0&mimeType=html&fmt=ahah

References

  1. Anderson S. L., McIntosh L.. ( 1991;). Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. . J Bacteriol 173:, 2761–2767.[PubMed]
    [Google Scholar]
  2. Aoki S., Onai K.. ( 2009;). Circadian clocks of Synechocystis sp. strain PCC 6803, Thermosynechococcus elongatus, Prochlorococcus spp., Trichodesmium spp. and other species. . In Bacterial Circadian Programs, pp. 259–282. Edited by Ditty J. L., Mackey S. R., Johnson C. H... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  3. Aoki S., Kondo T., Ishiura M.. ( 1995;). Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 177:, 5606–5611.[PubMed]
    [Google Scholar]
  4. Axmann I. M., Hertel S., Wiegard A., Dörrich A. K., Wilde A.. ( 2014;). Diversity of KaiC-based timing systems in marine cyanobacteria. . Mar Genomics 14:, 3–16. [CrossRef][PubMed]
    [Google Scholar]
  5. Beck C., Hertel S., Rediger A., Lehmann R., Wiegard A., Kölsch A., Heilmann B., Georg J., Hess W. R., Axmann I. M.. ( 2014;). Daily expression pattern of protein-coding genes and small noncoding RNAs in Synechocystis sp. PCC 6803. . Appl Environ Microbiol 80:, 5195–5206. [CrossRef][PubMed]
    [Google Scholar]
  6. Červený J., Nedbal L.. ( 2009;). Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. . J Biol Rhythms 24:, 295–303. [CrossRef][PubMed]
    [Google Scholar]
  7. Emlyn-Jones D., Ashby M. K., Mullineaux C. W.. ( 1999;). A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. . Mol Microbiol 33:, 1050–1058. [CrossRef][PubMed]
    [Google Scholar]
  8. García-Domínguez M., Muro-Pastor M. I., Reyes J. C., Florencio F. J.. ( 2000;). Light-dependent regulation of cyanobacterial phytochrome expression. . J Bacteriol 182:, 38–44. [CrossRef][PubMed]
    [Google Scholar]
  9. Georg J., Voss B., Scholz I., Mitschke J., Wilde A., Hess W. R.. ( 2009;). Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. . Mol Syst Biol 5:, 305. [CrossRef][PubMed]
    [Google Scholar]
  10. Grigorieva G., Shestakov S.. ( 1982;). Transformation in the cyanobacterium Synechocystis sp. 6803. . FEMS Microbiol Lett 13:, 367–370. [CrossRef]
    [Google Scholar]
  11. Guerreiro A. C., Benevento M., Lehmann R., van Breukelen B., Post H., Giansanti P., Maarten Altelaar A. F., Axmann I. M., Heck A. J.. ( 2014;). Daily rhythms in the cyanobacterium Synechococcus elongatus probed by high-resolution mass spectrometry based proteomics reveals a small-defined set of cyclic proteins. . Mol Cell Proteomics 13:, 2042–2055. [CrossRef][PubMed]
    [Google Scholar]
  12. Hoffmann D., Gutekunst K., Klissenbauer M., Schulz-Friedrich R., Appel J.. ( 2006;). Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. Additional homologues of hypA and hypB are not active in hydrogenase maturation. . FEBS J 273:, 4516–4527. [CrossRef][PubMed]
    [Google Scholar]
  13. Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H., Kondo T.. ( 1998;). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. . Science 281:, 1519–1523. [CrossRef][PubMed]
    [Google Scholar]
  14. Ito H., Mutsuda M., Murayama Y., Tomita J., Hosokawa N., Terauchi K., Sugita C., Sugita M., Kondo T., Iwasaki H.. ( 2009;). Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. . Proc Natl Acad Sci U S A 106:, 14168–14173. [CrossRef][PubMed]
    [Google Scholar]
  15. Iwasaki H., Williams S. B., Kitayama Y., Ishiura M., Golden S. S., Kondo T.. ( 2000;). A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. . Cell 101:, 223–233. [CrossRef][PubMed]
    [Google Scholar]
  16. Johnson C. H., Mori T., Xu Y.. ( 2008;). A cyanobacterial circadian clockwork. . Curr Biol 18:, R816–R825. [CrossRef][PubMed]
    [Google Scholar]
  17. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M.. & other authors ( 1996;). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. . DNA Res 3:, 109–136. [CrossRef][PubMed]
    [Google Scholar]
  18. Kucho K.-i., Okamoto K., Tsuchiya Y., Nomura S., Nango M., Kanehisa M., Ishiura M.. ( 2005;). Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 187:, 2190–2199. [CrossRef][PubMed]
    [Google Scholar]
  19. Majeed W., Zhang Y., Xue Y., Ranade S., Blue R. N., Wang Q., He Q.. ( 2012;). RpaA regulates the accumulation of monomeric photosystem I and PsbA under high light conditions in Synechocystis sp. PCC 6803. . PLoS ONE 7:, e45139. [CrossRef][PubMed]
    [Google Scholar]
  20. Markson J. S., Piechura J. R., Puszynska A. M., O’Shea E. K.. ( 2013;). Circadian control of global gene expression by the cyanobacterial master regulator RpaA. . Cell 155:, 1396–1408. [CrossRef][PubMed]
    [Google Scholar]
  21. Mitschke J., Georg J., Scholz I., Sharma C. M., Dienst D., Bantscheff J., Voss B., Steglich C., Wilde A.. & other authors ( 2011;). An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. . Proc Natl Acad Sci U S A 108:, 2124–2129. [CrossRef][PubMed]
    [Google Scholar]
  22. Nagarajan S., Srivastava S., Sherman L. A.. ( 2014;). Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. . Mol Microbiol 91:, 79–97. [CrossRef][PubMed]
    [Google Scholar]
  23. Onai K., Morishita M., Itoh S., Okamoto K., Ishiura M.. ( 2004;). Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range. . J Bacteriol 186:, 4972–4977. [CrossRef][PubMed]
    [Google Scholar]
  24. Osanai T., Kanesaki Y., Nakano T., Takahashi H., Asayama M., Shirai M., Kanehisa M., Suzuki I., Murata N., Tanaka K.. ( 2005;). Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 σ factor sigE. . J Biol Chem 280:, 30653–30659. [CrossRef][PubMed]
    [Google Scholar]
  25. Osanai T., Oikawa A., Azuma M., Tanaka K., Saito K., Hirai M. Y., Ikeuchi M.. ( 2011;). Genetic engineering of group 2 σ factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. . J Biol Chem 286:, 30962–30971. [CrossRef][PubMed]
    [Google Scholar]
  26. Osanai T., Kuwahara A., Iijima H., Toyooka K., Sato M., Tanaka K., Ikeuchi M., Saito K., Hirai M. Y.. ( 2013;). Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803. . Plant J 76:, 456–465. [CrossRef][PubMed]
    [Google Scholar]
  27. Paithoonrangsarid K., Shoumskaya M. A., Kanesaki Y., Satoh S., Tabata S., Los D. A., Zinchenko V. V., Hayashi H., Tanticharoen M.. & other authors ( 2004;). Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. . J Biol Chem 279:, 53078–53086. [CrossRef][PubMed]
    [Google Scholar]
  28. Pattanayak G., Rust M. J.. ( 2014;). The cyanobacterial clock and metabolism. . Curr Opin Microbiol 18:, 90–95. [CrossRef][PubMed]
    [Google Scholar]
  29. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef][PubMed]
    [Google Scholar]
  30. Pinto F. L., Thapper A., Sontheim W., Lindblad P.. ( 2009;). Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. . BMC Mol Biol 10:, 79. [CrossRef][PubMed]
    [Google Scholar]
  31. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y.. ( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. . J Gen Microbiol 111:, 1–61. [CrossRef]
    [Google Scholar]
  32. Rujan T., Martin W.. ( 2001;). How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. . Trends Genet 17:, 113–120. [CrossRef][PubMed]
    [Google Scholar]
  33. Schwarz D., Schubert H., Georg J., Hess W. R., Hagemann M.. ( 2013;). The gene sml0013 of Synechocystis species strain PCC 6803 encodes for a novel subunit of the NAD(P)H oxidoreductase or complex I that is ubiquitously distributed among cyanobacteria. . Plant Physiol 163:, 1191–1202. [CrossRef][PubMed]
    [Google Scholar]
  34. Seino Y., Takahashi T., Hihara Y.. ( 2009;). The response regulator RpaB binds to the upstream element of photosystem I genes to work for positive regulation under low-light conditions in Synechocystis sp. Strain PCC 6803. . J Bacteriol 191:, 1581–1586. [CrossRef][PubMed]
    [Google Scholar]
  35. Shih P. M., Wu D., Latifi A., Axen S. D., Fewer D. P., Talla E., Calteau A., Cai F., Tandeau de Marsac N.. & other authors ( 2013;). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. . Proc Natl Acad Sci U S A 110:, 1053–1058. [CrossRef][PubMed]
    [Google Scholar]
  36. Singh A. K., Sherman L. A.. ( 2005;). Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. . J Bacteriol 187:, 2368–2376. [CrossRef][PubMed]
    [Google Scholar]
  37. Singh A. K., Li H., Sherman L. A.. ( 2004;). Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. . Physiol Plant 120:, 27–35. [CrossRef][PubMed]
    [Google Scholar]
  38. Smyth G. K., Michaud J., Scott H. S.. ( 2005;). Use of within-array replicate spots for assessing differential expression in microarray experiments. . Bioinformatics 21:, 2067–2075. [CrossRef][PubMed]
    [Google Scholar]
  39. Stöckel J., Welsh E. A., Liberton M., Kunnvakkam R., Aurora R., Pakrasi H. B.. ( 2008;). Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. . Proc Natl Acad Sci U S A 105:, 6156–6161. [CrossRef][PubMed]
    [Google Scholar]
  40. Takahashi T., Nakai N., Muramatsu M., Hihara Y.. ( 2010;). Role of multiple HLR1 sequences in the regulation of the dual promoters of the psaAB genes in Synechocystis sp. PCC 6803. . J Bacteriol 192:, 4031–4036. [CrossRef][PubMed]
    [Google Scholar]
  41. Takai N., Nakajima M., Oyama T., Kito R., Sugita C., Sugita M., Kondo T., Iwasaki H.. ( 2006;). A KaiC-associating SasA–RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. . Proc Natl Acad Sci U S A 103:, 12109–12114. [CrossRef][PubMed]
    [Google Scholar]
  42. Toepel J., Welsh E., Summerfield T. C., Pakrasi H. B., Sherman L. A.. ( 2008;). Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light–dark and continuous-light growth. . J Bacteriol 190:, 3904–3913. [CrossRef][PubMed]
    [Google Scholar]
  43. Trautmann D., Voss B., Wilde A., Al-Babili S., Hess W. R.. ( 2012;). Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. . DNA Res 19:, 435–448. [CrossRef][PubMed]
    [Google Scholar]
  44. Wegener K. M., Welsh E. A., Thornton L. E., Keren N., Jacobs J. M., Hixson K. K., Monroe M. E., Camp D. G. II, Smith R. D., Pakrasi H. B.. ( 2008;). High sensitivity proteomics assisted discovery of a novel operon involved in the assembly of photosystem II, a membrane protein complex. . J Biol Chem 283:, 27829–27837. [CrossRef][PubMed]
    [Google Scholar]
  45. Wiegard A., Dörrich A. K., Deinzer H. T., Beck C., Wilde A., Holtzendorff J., Axmann I. M.. ( 2013;). Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. . Microbiology 159:, 948–958. [CrossRef][PubMed]
    [Google Scholar]
  46. Yen U.-C., Huang T.-C., Yen T.-C.. ( 2004;). Observation of the circadian photosynthetic rhythm in cyanobacteria with a dissolved-oxygen meter. . Plant Sci 166:, 949–952. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081695-0
Loading
/content/journal/micro/10.1099/mic.0.081695-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error