1887

Abstract

species often play an important role in the bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of . In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance–nodulation–cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable species to tolerate high uranium concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081398-0
2014-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2607.html?itemId=/content/journal/micro/10.1099/mic.0.081398-0&mimeType=html&fmt=ahah

References

  1. Anderson R. T., Vrionis H. A., Ortiz-Bernad I., Resch C. T., Long P. E., Dayvault R., Karp K., Marutzky S., Metzler D. R.. & other authors ( 2003;). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. . Appl Environ Microbiol 69:, 5884–5891. [CrossRef][PubMed]
    [Google Scholar]
  2. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. . FEMS Microbiol Rev 27:, 215–237. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernhardt J., Völker U., Völker A., Antelmann H., Schmid R., Mach H., Hecker M.. ( 1997;). Specific and general stress proteins in Bacillus subtilis – a two-dimensional protein electrophoresis study. . Microbiology 143:, 999–1017. [CrossRef][PubMed]
    [Google Scholar]
  4. Bradford G. R., Bakhtar D., Westcot D.. ( 1990;). Uranium, vanadium, and molybdenum in saline waters of California. . J Environ Qual 19:, 105–108. [CrossRef]
    [Google Scholar]
  5. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J.. ( 1994;). Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. . Appl Environ Microbiol 60:, 3752–3759.[PubMed]
    [Google Scholar]
  6. Cánovas D., Cases I., de Lorenzo V.. ( 2003;). Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. . Environ Microbiol 5:, 1242–1256. [CrossRef][PubMed]
    [Google Scholar]
  7. Chourey K., Thompson M. R., Morrell-Falvey J., Verberkmoes N. C., Brown S. D., Shah M., Zhou J., Doktycz M., Hettich R. L., Thompson D. K.. ( 2006;). Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. . Appl Environ Microbiol 72:, 6331–6344. [CrossRef][PubMed]
    [Google Scholar]
  8. Converse B. J., Wu T., Findlay R. H., Roden E. E.. ( 2013;). U(VI) reduction in sulfate-reducing subsurface sediments amended with ethanol or acetate. . Appl Environ Microbiol 79:, 4173–4177. [CrossRef][PubMed]
    [Google Scholar]
  9. Coppi M. V., Leang C., Sandler S. J., Lovley D. R.. ( 2001;). Development of a genetic system for Geobacter sulfurreducens. . Appl Environ Microbiol 67:, 3180–3187. [CrossRef][PubMed]
    [Google Scholar]
  10. Ding Y.-H. R., Hixson K. K., Giometti C. S., Stanley A., Esteve-Núñez A., Khare T., Tollaksen S. L., Zhu W., Adkins J. N.. & other authors ( 2006;). The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. . Biochim Biophys Acta 1764:, 1198–1206. [CrossRef][PubMed]
    [Google Scholar]
  11. Eng J. K., McCormack A. L., Yates J. R.. ( 1994;). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. . J Am Soc Mass Spectrom 5:, 976–989. [CrossRef][PubMed]
    [Google Scholar]
  12. Farr S. B., Kogoma T.. ( 1991;). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. . Microbiol Rev 55:, 561–585.[PubMed]
    [Google Scholar]
  13. Finneran K. T., Anderson R. T., Nevin K. P., Lovley D. R.. ( 2002;). Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. . Soil Sediment Contam 11:, 339–357. [CrossRef]
    [Google Scholar]
  14. Gadd G. M.. ( 2010;). Metals, minerals and microbes: geomicrobiology and bioremediation. . Microbiology 156:, 609–643. [CrossRef][PubMed]
    [Google Scholar]
  15. Geslin C., Llanos J., Prieur D., Jeanthon C.. ( 2001;). The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. . Res Microbiol 152:, 901–905. [CrossRef][PubMed]
    [Google Scholar]
  16. Ghosh M., Rosen B. P.. ( 2002;). Microbial resistance mechanisms for heavy metals and metalloids. . In Heavy Metals in the Environment, pp. 531–548. Edited by Sarkar B... New York:: Dekker;. [CrossRef]
    [Google Scholar]
  17. Gonzalez H., Jensen T. E.. ( 1998;). Nickel sequestering by polyphosphate bodies in Staphylococcus aureus. . Microbios 93:, 179–185.[PubMed]
    [Google Scholar]
  18. Gray C.. ( 1994;). Electron microscopy of protein–nucleic acid complexes. . In DNA–Protein Interactions, pp. 347–356. Edited by Kneale G... Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  19. Harkewicz R., Belov M. E., Anderson G. A., Pasa-Tolić L., Masselon C. D., Prior D. C., Udseth H. R., Smith R. D.. ( 2002;). ESI-FTICR mass spectrometry employing data-dependent external ion selection and accumulation. . J Am Soc Mass Spectrom 13:, 144–154. [CrossRef][PubMed]
    [Google Scholar]
  20. Hartsock W. J., Cohen J. D., Segal D. J.. ( 2007;). Uranyl acetate as a direct inhibitor of DNA-binding proteins. . Chem Res Toxicol 20:, 784–789. [CrossRef][PubMed]
    [Google Scholar]
  21. Holmes D. E., Nevin K. P., O’Neil R. A., Ward J. E., Adams L. A., Woodard T. L., Vrionis H. A., Lovley D. R.. ( 2005;). Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. . Appl Environ Microbiol 71:, 6870–6877. [CrossRef][PubMed]
    [Google Scholar]
  22. Holmes D. E., O’Neil R. A., Vrionis H. A., N’guessan L. A., Ortiz-Bernad I., Larrahondo M. J., Adams L. A., Ward J. A., Nicoll J. S.. & other authors ( 2007;). Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. . ISME J 1:, 663–677. [CrossRef][PubMed]
    [Google Scholar]
  23. Holmes D. E., O’Neil R. A., Chavan M. A., N’Guessan L. A., Vrionis H. A., Perpetua L. A., Larrahondo M. J., DiDonato R., Liu A., Lovley D. R.. ( 2009;). Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. . ISME J 3:, 216–230. [CrossRef][PubMed]
    [Google Scholar]
  24. Hu P., Brodie E. L., Suzuki Y., McAdams H. H., Andersen G. L.. ( 2005;). Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. . J Bacteriol 187:, 8437–8449. [CrossRef][PubMed]
    [Google Scholar]
  25. Keasling J. D., Hupf G. A.. ( 1996;). Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. . Appl Environ Microbiol 62:, 743–746.[PubMed]
    [Google Scholar]
  26. Keyhani S., Lopez J., Clark D., Keasling J.. ( 1996;). Intracellular polyphosphate content and cadmium tolerance in Anacystis nidulans R2. . Microbios 88:, 105–114.
    [Google Scholar]
  27. Kim E. H., Nies D. H., McEvoy M. M., Rensing C.. ( 2011;). Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. . J Bacteriol 193:, 2381–2387. [CrossRef][PubMed]
    [Google Scholar]
  28. Krushkal J., Sontineni S., Leang C., Qu Y. H., Adkins R. M., Lovley D. R.. ( 2011;). Genome diversity of the TetR family of transcriptional regulators in a metal-reducing bacterial family Geobacteraceae and other microbial species. . OMICS 15:, 495–506. [CrossRef][PubMed]
    [Google Scholar]
  29. Lin W. C., Coppi M. V., Lovley D. R.. ( 2004;). Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. . Appl Environ Microbiol 70:, 2525–2528. [CrossRef][PubMed]
    [Google Scholar]
  30. Lipton M. S., Pasa-Tolić L., Anderson G. A., Anderson D. J., Auberry D. L., Battista J. R., Daly M. J., Fredrickson J., Hixson K. K.. & other authors ( 2002;). Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. . Proc Natl Acad Sci U S A 99:, 11049–11054. [CrossRef][PubMed]
    [Google Scholar]
  31. Lloyd J. R., Lovley D. R.. ( 2001;). Microbial detoxification of metals and radionuclides. . Curr Opin Biotechnol 12:, 248–253. [CrossRef][PubMed]
    [Google Scholar]
  32. Lovley D. R., Phillips E. J. P.. ( 1988;). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54:, 1472–1480.[PubMed]
    [Google Scholar]
  33. Lovley D. R., Phillips E. J. P., Gorby Y. A., Landa E. R.. ( 1991;). Microbial reduction of uranium. . Nature 350:, 413–416. [CrossRef]
    [Google Scholar]
  34. Lovley D. R., Ueki T., Zhang T., Malvankar N. S., Shrestha P. M., Flanagan K. A., Aklujkar M., Butler J. E., Giloteaux L.. & other authors ( 2011;). Geobacter: the microbe electric’s physiology, ecology, and practical applications. . Adv Microb Physiol 59:, 1–100. [CrossRef][PubMed]
    [Google Scholar]
  35. Mahadevan R., Bond D. R., Butler J. E., Esteve-Nuñez A., Coppi M. V., Palsson B. O., Schilling C. H., Lovley D. R.. ( 2006;). Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. . Appl Environ Microbiol 72:, 1558–1568. [CrossRef][PubMed]
    [Google Scholar]
  36. Mahadevan R., Palsson B. Ø., Lovley D. R.. ( 2011;). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. . Nat Rev Microbiol 9:, 39–50. [CrossRef][PubMed]
    [Google Scholar]
  37. Matsuda E., Nakajima A.. ( 2012;). Effect of catechins and tannins on depleted uranium-induced DNA strand breaks. . J Radioanal Nucl Chem 293:, 711–714. [CrossRef]
    [Google Scholar]
  38. Mehta T., Childers S. E., Glaven R., Lovley D. R., Mester T.. ( 2006;). A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens. . Microbiology 152:, 2257–2264. [CrossRef][PubMed]
    [Google Scholar]
  39. Merroun M. L., Selenska-Pobell S.. ( 2008;). Bacterial interactions with uranium: an environmental perspective. . J Contam Hydrol 102:, 285–295. [CrossRef][PubMed]
    [Google Scholar]
  40. Methé B. A., Nelson K. E., Eisen J. A., Paulsen I. T., Nelson W., Heidelberg J. F., Wu D., Wu M., Ward N.. & other authors ( 2003;). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. . Science 302:, 1967–1969. [CrossRef][PubMed]
    [Google Scholar]
  41. Mouser P. J., Holmes D. E., Perpetua L. A., DiDonato R., Postier B., Liu A., Lovley D. R.. ( 2009;). Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation. . ISME J 3:, 454–465. [CrossRef][PubMed]
    [Google Scholar]
  42. Newsome L., Morris K., Lloyd J. R.. ( 2014;). The biogeochemistry and bioremediation of uranium and other priority radionuclides. . Chem Geol 363:, 164–184. [CrossRef]
    [Google Scholar]
  43. Nies D. H.. ( 1999;). Microbial heavy-metal resistance. . Appl Microbiol Biotechnol 51:, 730–750. [CrossRef][PubMed]
    [Google Scholar]
  44. Nies D. H.. ( 2003;). Efflux-mediated heavy metal resistance in prokaryotes. . FEMS Microbiol Rev 27:, 313–339. [CrossRef][PubMed]
    [Google Scholar]
  45. Nies D. H.. ( 2013;). RND efflux pumps for metal cations. . In Microbial Efflux Pumps: Current Research, pp. 79–121. Edited by Yu E. W., Zhang Q., Brown M. H... Norwich:: Horizon Scientific Press;.
    [Google Scholar]
  46. Orellana R., Leavitt J. J., Comolli L. R., Csencsits R., Janot N., Flanagan K. A., Gray A. S., Leang C., Izallalen M.. & other authors ( 2013;). U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. . Appl Environ Microbiol 79:, 6369–6374. [CrossRef][PubMed]
    [Google Scholar]
  47. Pourahmad J., Ghashang M., Ettehadi H. A., Ghalandari R.. ( 2006;). A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity. . Environ Toxicol 21:, 349–354. [CrossRef][PubMed]
    [Google Scholar]
  48. Privalle C. T., Fridovich I.. ( 1987;). Induction of superoxide dismutase in Escherichia coli by heat shock. . Proc Natl Acad Sci U S A 84:, 2723–2726. [CrossRef][PubMed]
    [Google Scholar]
  49. Qian W. J., Liu T., Monroe M. E., Strittmatter E. F., Jacobs J. M., Kangas L. J., Petritis K., Camp D. G. II, Smith R. D.. ( 2005;). Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and sequest analysis: the human proteome. . J Proteome Res 4:, 53–62. [CrossRef][PubMed]
    [Google Scholar]
  50. Roux M., Covés J.. ( 2002;). The iron-containing superoxide dismutase of Ralstonia metallidurans CH34. . FEMS Microbiol Lett 210:, 129–133. [CrossRef][PubMed]
    [Google Scholar]
  51. Schnug E., Haneklaus S.. ( 2008;). Dispersion of uranium in the environment by fertilization. . In Uranium, Mining and Hydrogeology, pp. 45–52. Edited by Merkel B., Hasche-Berger A... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  52. Seufferheld M. J., Alvarez H. M., Farias M. E.. ( 2008;). Role of polyphosphates in microbial adaptation to extreme environments. . Appl Environ Microbiol 74:, 5867–5874. [CrossRef][PubMed]
    [Google Scholar]
  53. Shelobolina E. S., Coppi M. V., Korenevsky A. A., DiDonato L. N., Sullivan S. A., Konishi H., Xu H., Leang C., Butler J. E.. & other authors ( 2007;). Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens.. BMC Microbiol 7:, 16. [CrossRef][PubMed]
    [Google Scholar]
  54. Shelobolina E. S., Vrionis H. A., Findlay R. H., Lovley D. R.. ( 2008;). Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. . Int J Syst Evol Microbiol 58:, 1075–1078. [CrossRef][PubMed]
    [Google Scholar]
  55. Smirnova G. V., Oktyabrsky O. N.. ( 2005;). Glutathione in bacteria. . Biochemistry (Mosc) 70:, 1199–1211. [CrossRef][PubMed]
    [Google Scholar]
  56. Smith J. A., Lovley D. R., Tremblay P.-L.. ( 2013;). Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. . Appl Environ Microbiol 79:, 901–907. [CrossRef][PubMed]
    [Google Scholar]
  57. Snoeyenbos-West O. L., Nevin K. P., Anderson R. T., Lovley D. R.. ( 2000;). Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. . Microb Ecol 39:, 153–167. [CrossRef][PubMed]
    [Google Scholar]
  58. Strycharz S. M., Glaven R. H., Coppi M. V., Gannon S. M., Perpetua L. A., Liu A., Nevin K. P., Lovley D. R.. ( 2011;). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. . Bioelectrochemistry 80:, 142–150. [CrossRef][PubMed]
    [Google Scholar]
  59. Summers A. O.. ( 2009;). Damage control: regulating defenses against toxic metals and metalloids. . Curr Opin Microbiol 12:, 138–144. [CrossRef][PubMed]
    [Google Scholar]
  60. Tottey S., Harvie D. R., Robinson N. J.. ( 2005;). Understanding how cells allocate metals using metal sensors and metallochaperones. . Acc Chem Res 38:, 775–783. [CrossRef][PubMed]
    [Google Scholar]
  61. Tran, H. T. ( 2009;). Investigation of chemotaxis genes and their functions in Geobacter species. . PhD thesis, University of Massachusetts;, Amherst, MA, USA:.
  62. Ueki T., Lovley D. R.. ( 2007;). Heat-shock sigma factor RpoH from Geobacter sulfurreducens. . Microbiology 153:, 838–846. [CrossRef][PubMed]
    [Google Scholar]
  63. Van Horn J. D., Huang H.. ( 2006;). Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. . Coord Chem Rev 250:, 765–775. [CrossRef]
    [Google Scholar]
  64. Voordeckers J. W., Kim B. C., Izallalen M., Lovley D. R.. ( 2010;). Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. . Appl Environ Microbiol 76:, 2371–2375. [CrossRef][PubMed]
    [Google Scholar]
  65. Vrionis H. A., Anderson R. T., Ortiz-Bernad I., O’Neill K. R., Resch C. T., Peacock A. D., Dayvault R., White D. C., Long P. E., Lovley D. R.. ( 2005;). Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. . Appl Environ Microbiol 71:, 6308–6318. [CrossRef][PubMed]
    [Google Scholar]
  66. Wall J. D., Krumholz L. R.. ( 2006;). Uranium reduction. . Annu Rev Microbiol 60:, 149–166. [CrossRef][PubMed]
    [Google Scholar]
  67. Wen, Y. ( 2008;). Inhibitory effects of uranium(VI) on bacterial metabolism and transcriptional response of Shewanella oneidensis MR-1 to uranium stress. . PhD thesis, Stanford University;, Stanford, CA, USA:.
  68. Wilkins M. J., Callister S. J., Miletto M., Williams K. H., Nicora C. D., Lovley D. R., Long P. E., Lipton M. S.. ( 2011;). Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI). . Microb Biotechnol 4:, 55–63. [CrossRef][PubMed]
    [Google Scholar]
  69. Williams K. H., Bargar J. R., Lloyd J. R., Lovley D. R.. ( 2013;). Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. . Curr Opin Biotechnol 24:, 489–497. [CrossRef][PubMed]
    [Google Scholar]
  70. Yazzie M., Gamble S. L., Civitello E. R., Stearns D. M.. ( 2003;). Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). . Chem Res Toxicol 16:, 524–530. [CrossRef][PubMed]
    [Google Scholar]
  71. Yun J., Ueki T., Miletto M., Lovley D. R.. ( 2011;). Monitoring the metabolic status of geobacter species in contaminated groundwater by quantifying key metabolic proteins with Geobacter-specific antibodies. . Appl Environ Microbiol 77:, 4597–4602. [CrossRef][PubMed]
    [Google Scholar]
  72. Zobel C. R., Beer M.. ( 1961;). Electron stains. I. Chemical studies on the interaction of DNA with uranyl salts. . J Biophys Biochem Cytol 10:, 335–346. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081398-0
Loading
/content/journal/micro/10.1099/mic.0.081398-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error