1887

Abstract

Dps, the most abundant protein during the stationary growth phase, in is required for resistance to reactive oxygen species produced by the host during infection. It has been reported that in expression is controlled by RpoS and Fur proteins. However, the regulation and function of Dps remain to be resolved. In the present work we demonstrate that activation of the complex RcsCDB regulatory system increases expression during exponential growth of . In addition, we show that such upregulation produces high levels of HO resistance. This phenotype allows the bacteria to avoid reactive oxygen species killing at early stages of growth, thus protecting its genetic material.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081133-0
2014-10-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2190.html?itemId=/content/journal/micro/10.1099/mic.0.081133-0&mimeType=html&fmt=ahah

References

  1. Almirón M., Link A. J., Furlong D., Kolter R..( 1992;). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev6:12b2646–2654 [CrossRef][PubMed]
    [Google Scholar]
  2. Altuvia S., Almirón M., Huisman G., Kolter R., Storz G..( 1994;). The dps promoter is activated by OxyR during growth and by IHF and σS in stationary phase. Mol Microbiol13:265–272 [CrossRef][PubMed]
    [Google Scholar]
  3. Burton N. A., Schürmann N., Casse O., Steeb A. K., Claudi B., Zankl J., Schmidt A., Bumann D..( 2014;). Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe15:72–83 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen L., Helmann J. D..( 1995;). Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol18:295–300 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen M. H., Takeda S., Yamada H., Ishii Y., Yamashino T., Mizuno T..( 2001;). Characterization of the RcsC→YojN→RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci Biotechnol Biochem65:2364–2367 [CrossRef][PubMed]
    [Google Scholar]
  6. Chiancone E., Ceci P..( 2010;). The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta1800:798–805 [CrossRef][PubMed]
    [Google Scholar]
  7. Clarke D. J., Holland I. B., Jacq A..( 1997;). Point mutations in the transmembrane domain of DjlA, a membrane-linked DnaJ-like protein, abolish its function in promoting colanic acid production via the Rcs signal transduction pathway. Mol Microbiol25:933–944 [CrossRef][PubMed]
    [Google Scholar]
  8. Costa C. S., Antón D. N..( 2001;). Role of the ftsA1p promoter in the resistance of mucoid mutants of Salmonella enterica to mecillinam: characterization of a new type of mucoid mutant. FEMS Microbiol Lett200:201–205 [CrossRef][PubMed]
    [Google Scholar]
  9. Davis R. W., Bolstein D., Roth J. R..( 1980;). Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  10. Delgado M. A., Mouslim C., Groisman E. A..( 2006;). The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol60:39–50 [CrossRef][PubMed]
    [Google Scholar]
  11. Domínguez-Bernal G., Pucciarelli M. G., Ramos-Morales F., García-Quintanilla M., Cano D. A., Casadesús J., García-del Portillo F..( 2004;). Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol53:1437–1449 [CrossRef][PubMed]
    [Google Scholar]
  12. Ebel W., Vaughn G. J., Peters H. K. III, Trempy J. E..( 1997;). Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol179:6858–6861[PubMed]
    [Google Scholar]
  13. Ellermeier C. D., Janakiraman A., Slauch J. M..( 2002;). Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene290:153–161 [CrossRef][PubMed]
    [Google Scholar]
  14. Farizano J. V., Pescaretti Mde. L., López F. E., Hsu F. F., Delgado M. A..( 2012;). The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella Typhimurium–host interactions. J Biol Chem287:38778–38789 [CrossRef][PubMed]
    [Google Scholar]
  15. Farr S. B., Kogoma T..( 1991;). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev55:561–585[PubMed]
    [Google Scholar]
  16. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F..( 1986;). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A83:5189–5193 [CrossRef][PubMed]
    [Google Scholar]
  17. Frenkiel-Krispin D., Levin-Zaidman S., Shimoni E., Wolf S. G., Wachtel E. J., Arad T., Finkel S. E., Kolter R., Minsky A..( 2001;). Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. EMBO J20:1184–1191 [CrossRef][PubMed]
    [Google Scholar]
  18. Gottesman S..( 1995;). Regulation of capsule synthesis: modification of the two-component paradigm by an accessory unstable regulator. Two-Component Signal Transduction253–262 Hoch J. A., Silhavy T. J.. Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  19. Gottesman S., Stout V..( 1991;). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol5:1599–1606 [CrossRef][PubMed]
    [Google Scholar]
  20. Grant R. A., Filman D. J., Finkel S. E., Kolter R., Hogle J. M..( 1998;). The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol5:294–303 [CrossRef][PubMed]
    [Google Scholar]
  21. Halsey T. A., Vazquez-Torres A., Gravdahl D. J., Fang F. C., Libby S. J..( 2004;). The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun72:1155–1158 [CrossRef][PubMed]
    [Google Scholar]
  22. Lacour S., Landini P..( 2004;). σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J Bacteriol186:7186–7195 [CrossRef][PubMed]
    [Google Scholar]
  23. Lehti T. A., Heikkinen J., Korhonen T. K., Westerlund-Wikström B..( 2012;). The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli. J Bacteriol194:3475–3485 [CrossRef][PubMed]
    [Google Scholar]
  24. Majdalani N., Gottesman S..( 2005;). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol59:379–405 [CrossRef][PubMed]
    [Google Scholar]
  25. Marjorette M., Peña O., Bullerjahn G. S..( 1995;). The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein. J Biol Chem270:22478–22482 [CrossRef][PubMed]
    [Google Scholar]
  26. Martinez A., Kolter R..( 1997;). Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol179:5188–5194[PubMed]
    [Google Scholar]
  27. Miller J. H..( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  28. Mouslim C., Groisman E. A..( 2003;). Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol47:335–344 [CrossRef][PubMed]
    [Google Scholar]
  29. Mouslim C., Latifi T., Groisman E. A..( 2003;). Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J Biol Chem278:50588–50595 [CrossRef][PubMed]
    [Google Scholar]
  30. Mouslim C., Delgado M., Groisman E. A..( 2004;). Activation of the RcsC/YojN/RcsB phosphorelay system attenuates Salmonella virulence. Mol Microbiol54:386–395 [CrossRef][PubMed]
    [Google Scholar]
  31. Pacello F., Ceci P., Ammendola S., Pasquali P., Chiancone E., Battistoni A..( 2008;). Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species. Biochim Biophys Acta1780:226–232 [CrossRef][PubMed]
    [Google Scholar]
  32. Penheiter K. L., Mathur N., Giles D., Fahlen T., Jones B. D..( 1997;). Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer’s patches. Mol Microbiol24:697–709 [CrossRef][PubMed]
    [Google Scholar]
  33. Pescaretti Mde. L., Morero R., Delgado M. A..( 2009;). Identification of a new promoter for the response regulator rcsB expression in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett300:165–173 [CrossRef][PubMed]
    [Google Scholar]
  34. Pescaretti Mde. L., López F. E., Morero R. D., Delgado M. A..( 2010;). Transcriptional autoregulation of the RcsCDB phosphorelay system in Salmonella enterica serovar Typhimurium. Microbiology156:3513–3521 [CrossRef][PubMed]
    [Google Scholar]
  35. Pescaretti Mde. L., Farizano J. V., Morero R., Delgado M. A..( 2013;). A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar typhimurium. PLoS ONE8:e72527 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  37. Sanderson K. E., Hessel A., Rudd K. E..( 1995;). Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev59:241–303[PubMed]
    [Google Scholar]
  38. Simons R. W., Houman F., Kleckner N..( 1987;). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  39. Takeda S., Fujisawa Y., Matsubara M., Aiba H., Mizuno T..( 2001;). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol40:440–450 [CrossRef][PubMed]
    [Google Scholar]
  40. Valdivia R. H., Falkow S..( 1996;). Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol22:367–378 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoo A. Y., Kim S. W., Yu J. E., Kim Y. H., Cha J., Oh J. I., Eo S. K., Lee J. H., Kang H. Y..( 2007;). Requirement of Fur for the full induction of Dps expression in Salmonella enterica serovar typhimurium. J Microbiol Biotechnol17:1452–1459[PubMed]
    [Google Scholar]
  42. Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T. M., Chiancone E., Chasteen N. D..( 2002;). Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem277:27689–27696 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081133-0
Loading
/content/journal/micro/10.1099/mic.0.081133-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error