1887

Abstract

Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)Cl(glycinate) (CORM-3), on . CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081042-0
2014-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2771.html?itemId=/content/journal/micro/10.1099/mic.0.081042-0&mimeType=html&fmt=ahah

References

  1. Bathoorn E., Slebos D. J., Postma D. S., Koeter G. H., van Oosterhout A. J., van der Toorn M., Boezen H. M., Kerstjens H. A.. ( 2007;). Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. . Eur Respir J 30:, 1131–1137. [CrossRef][PubMed]
    [Google Scholar]
  2. Blake R. C. II, Griff M. N.. ( 2012;). In situ spectroscopy on intact Leptospirillum ferrooxidans reveals that reduced cytochrome 579 is an obligatory intermediate in the aerobic iron respiratory chain. . Front Microbiol 3:, 136. [CrossRef][PubMed]
    [Google Scholar]
  3. Boczkowski J., Poderoso J. J., Motterlini R.. ( 2006;). CO–metal interaction: vital signaling from a lethal gas. . Trends Biochem Sci 31:, 614–621. [CrossRef][PubMed]
    [Google Scholar]
  4. Borisov V. B., Sedelnikova S. E., Poole R. K., Konstantinov A. A.. ( 2001;). Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO. . J Biol Chem 276:, 22095–22099. [CrossRef][PubMed]
    [Google Scholar]
  5. Chung S. W., Liu X., Macias A. A., Baron R. M., Perrella M. A.. ( 2008;). Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. . J Clin Invest 118:, 239–247. [CrossRef][PubMed]
    [Google Scholar]
  6. Clark J. E., Naughton P., Shurey S., Green C. J., Johnson T. R., Mann B. E., Foresti R., Motterlini R.. ( 2003;). Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. . Circ Res 93:, e2–e8. [CrossRef][PubMed]
    [Google Scholar]
  7. Davidge K. S., Sanguinetti G., Yee C. H., Cox A. G., McLeod C. W., Monk C. E., Mann B. E., Motterlini R., Poole R. K.. ( 2009;). Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators. . J Biol Chem 284:, 4516–4524. [CrossRef][PubMed]
    [Google Scholar]
  8. Desmard M., Davidge K. S., Bouvet O., Morin D., Roux D., Foresti R., Ricard J. D., Denamur E., Poole R. K.. & other authors ( 2009;). A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. . FASEB J 23:, 1023–1031. [CrossRef][PubMed]
    [Google Scholar]
  9. Desmard M., Foresti R., Morin D., Dagouassat M., Berdeaux A., Denamur E., Crook S. H., Mann B. E., Scapens D.. & other authors ( 2012;). Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules. . Antioxid Redox Signal 16:, 153–163. [CrossRef][PubMed]
    [Google Scholar]
  10. Elterman P.. ( 1970;). Integrating cavity spectroscopy. . Appl Opt 9:, 2140–2142. [CrossRef][PubMed]
    [Google Scholar]
  11. Engel R. R., Rodkey F. L., O’Neal J. D., Collison H. A.. ( 1969;). Relative affinity of human fetal hemoglobin for carbon monoxide and oxygen. . Blood 33:, 37–45.[PubMed]
    [Google Scholar]
  12. Evans C. G. T., Herbert D., Tempest D. W.. ( 1970;). The continuous cultivation of micro-organisms: 2. Construction of a chemostat. . In Methods in Microbiology, vol. 2, pp. 277–327. Edited by Norris J. R., Ribbons D. W... New York:: Elsevier;.
    [Google Scholar]
  13. Foresti R., Motterlini R.. ( 2010;). Interaction of carbon monoxide with transition metals: evolutionary insights into drug target discovery. . Curr Drug Targets 11:, 1595–1604. [CrossRef][PubMed]
    [Google Scholar]
  14. Fry E. S., Kattawar G. W., Pope R. M.. ( 1992;). Integrating cavity absorption meter. . Appl Opt 31:, 2055–2065. [CrossRef][PubMed]
    [Google Scholar]
  15. Graham A. I., Sanguinetti G., Bramall N., McLeod C. W., Poole R. K.. ( 2012;). Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators. . Microbiology 158:, 284–292. [CrossRef][PubMed]
    [Google Scholar]
  16. Hodgkinson J., Masiyano D., Tatam R. P.. ( 2009;). Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law. . Appl Opt 48:, 5748–5758. [CrossRef][PubMed]
    [Google Scholar]
  17. Jávorfi T., Erostyák J., Gál J., Buzády A., Menczel L., Garab G., Razi Naqvi K.. ( 2006;). Quantitative spectrophotometry using integrating cavities. . J Photochem Photobiol B 82:, 127–131. [CrossRef][PubMed]
    [Google Scholar]
  18. Jesse H. E., Nye T. L., McLean S., Green J., Mann B. E., Poole R. K.. ( 2013;). Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo′ to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-acetylcysteine reduces CO-RM uptake and inhibition of respiration. . Biochim Biophys Acta 1834:, 1693–1703. [CrossRef][PubMed]
    [Google Scholar]
  19. Jones C. W., Poole R. K.. ( 1985;). The analysis of cytochromes. . In Methods in Microbiology, vol. 18, pp. 285–328. Edited by Gottschalk G... New York:: Elsevier;.
    [Google Scholar]
  20. Kalnenieks U., Galinina N., Bringer-Meyer S., Poole R. K.. ( 1998;). Membrane d-lactate oxidase in Zymomonas mobilis: evidence for a branched respiratory chain. . FEMS Microbiol Lett 168:, 91–97.[PubMed]
    [Google Scholar]
  21. Keilin D.. ( 1966;). The History of Cell Respiration and Cytochrome. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  22. Koch A. L.. ( 1961;). Some calculations on the turbidity of mitochondria and bacteria. . Biochim Biophys Acta 51:, 429–441. [CrossRef][PubMed]
    [Google Scholar]
  23. Koch A. L.. ( 1968;). Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects. . J Theor Biol 18:, 133–156. [CrossRef][PubMed]
    [Google Scholar]
  24. Koch A. L.. ( 1970;). Turbidity measurements of bacterial cultures in some available commercial instruments. . Anal Biochem 38:, 252–259. [CrossRef][PubMed]
    [Google Scholar]
  25. Mann B. E.. ( 2010;). Carbon monoxide: an essential signalling molecule. . Top Organomet Chem 32:, 247–285. [CrossRef]
    [Google Scholar]
  26. McLean S., Mann B. E., Poole R. K.. ( 2012;). Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity. . Anal Biochem 427:, 36–40. [CrossRef][PubMed]
    [Google Scholar]
  27. McLean S., Begg R., Jesse H. E., Mann B. E., Sanguinetti G., Poole R. K.. ( 2013;). Analysis of the bacterial response to Ru(CO)3Cl(glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action. . Antioxid Redox Signal 19:, 1999–2012. [CrossRef][PubMed]
    [Google Scholar]
  28. Motterlini R., Otterbein L. E.. ( 2010;). The therapeutic potential of carbon monoxide. . Nat Rev Drug Discov 9:, 728–743. [CrossRef][PubMed]
    [Google Scholar]
  29. Nobre L. S., Seixas J. D., Romão C. C., Saraiva L. M.. ( 2007;). Antimicrobial action of carbon monoxide-releasing compounds. . Antimicrob Agents Chemother 51:, 4303–4307. [CrossRef][PubMed]
    [Google Scholar]
  30. Onyiah J. C., Sheikh S. Z., Maharshak N., Steinbach E. C., Russo S. M., Kobayashi T., Mackey L. C., Hansen J. J., Moeser A. J.. & other authors ( 2013;). Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. . Gastroenterology 144:, 789–798. [CrossRef][PubMed]
    [Google Scholar]
  31. Patel R., Albadawi H., Steudel W., Hashmi F. F., Kang J. W., Yoo H. J., Watkins M. T.. ( 2012;). Inhalation of carbon monoxide reduces skeletal muscle injury after hind limb ischemia-reperfusion injury in mice. . Am J Surg 203:, 488–495. [CrossRef][PubMed]
    [Google Scholar]
  32. Poole R. K., Kalnenieks U.. ( 2000;). Introduction to light and absorption: visible and ultraviolet spectra. . In Spectrophotometry and Spectrofluorimetry, pp. 1–32. Edited by Gore M. G... Oxford:: Oxford University Press;.
    [Google Scholar]
  33. Poole R. K., Waring A. J., Chance B.. ( 1979;). The reaction of cytochrome omicron in Escherichia coli with oxygen. Low-temperature kinetic and spectral studies. . Biochem J 184:, 379–389.[PubMed]
    [Google Scholar]
  34. Reeder B. J., Svistunenko D. A., Wilson M. T.. ( 2011;). Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress. . Biochem J 434:, 483–492. [CrossRef][PubMed]
    [Google Scholar]
  35. Romanski S., Kraus B., Schatzschneider U., Neudörfl J. M., Amslinger S., Schmalz H. G.. ( 2011;). Acyloxybutadiene iron tricarbonyl complexes as enzyme-triggered CO-releasing molecules (ET-CORMs). . Angew Chem Int Ed Engl 50:, 2392–2396. [CrossRef][PubMed]
    [Google Scholar]
  36. Schatzschneider U.. ( 2011;). PhotoCORMs: light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. . Inorg Chim Acta 374:, 19–23. [CrossRef]
    [Google Scholar]
  37. Smith H., Mann B. E., Motterlini R., Poole R. K.. ( 2011;). The carbon monoxide-releasing molecule, CORM-3 (Ru(CO)3CL(glycinate)), targets respiration and oxidases in Campylobacter jejuni, generating hydrogen peroxide. . IUBMB Life 63:, 363–371. [CrossRef][PubMed]
    [Google Scholar]
  38. Tavares A. F., Teixeira M., Romão C. C., Seixas J. D., Nobre L. S., Saraiva L. M.. ( 2011;). Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules. . J Biol Chem 286:, 26708–26717. [CrossRef][PubMed]
    [Google Scholar]
  39. Tinajero-Trejo M., Jesse H. E., Poole R. K.. ( 2013;). Gasotransmitters, poisons, and antimicrobials: it’s a gas, gas, gas!. F1000Prime Rep 5:, 28. [CrossRef][PubMed]
    [Google Scholar]
  40. Wilson J. L., Jesse H. E., Hughes B. M., Lund V., Naylor K., Davidge K. S., Cook G. M., Mann B. E., Poole R. K.. ( 2013;). Ru(CO)3Cl(glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli. . Antioxid Redox Signal 19:, 497–509. [CrossRef][PubMed]
    [Google Scholar]
  41. Yang C. C., Legallais V.. ( 1954;). A rapid and sensitive recording spectrophotometer for the visible and ultraviolet region. 1. Description and performance. . Rev Sci Instrum 25:, 801–807. [CrossRef]
    [Google Scholar]
  42. Zaki M. H., Fujii S., Okamoto T., Islam S., Khan S., Ahmed K. A., Sawa T., Akaike T.. ( 2009;). Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. . J Immunol 182:, 3746–3756. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081042-0
Loading
/content/journal/micro/10.1099/mic.0.081042-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error