1887

Abstract

The genome of the thermophilic green-sulfur bacterium TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (, 993 bp) and CT1713 (, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures – the largest one has an extra C-terminal HD domain – which may represent ancient paralogues. Both genes were cloned and overexpressed in BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg. Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P (polyP mix with mean chain length of 13–18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080952-0
2014-09-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/2067.html?itemId=/content/journal/micro/10.1099/mic.0.080952-0&mimeType=html&fmt=ahah

References

  1. Abramov A. Y., Fraley C., Diao C. T., Winkfein R., Colicos M. A., Duchen M. R., French R. J., Pavlov E.. ( 2007;). Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. . Proc Natl Acad Sci U S A 104:, 18091–18096. [CrossRef][PubMed]
    [Google Scholar]
  2. Akiyama M., Crooke E., Kornberg A.. ( 1992;). The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. . J Biol Chem 267:, 22556–22561.[PubMed]
    [Google Scholar]
  3. Akiyama M., Crooke E., Kornberg A.. ( 1993;). An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. . J Biol Chem 268:, 633–639.[PubMed]
    [Google Scholar]
  4. Ames B. N.. ( 1966;). Assay of inorganic phosphate, total phosphate and phosphatases. . In Methods in Enzymology, vol. 8, pp. 115–118. Edited by Neufeld E. F., Ginsburg V. .. New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  5. Aravind L., Koonin E. V.. ( 1998;). The HD domain defines a new superfamily of metal-dependent phosphohydrolases. . Trends Biochem Sci 23:, 469–472. [CrossRef][PubMed]
    [Google Scholar]
  6. Baykov A. A., Cooperman B. S., Goldman A., Lahti R.. ( 1999;). Cytoplasmic inorganic pyrophosphatase. . In Inorganic Polyphosphates (Progress in Molecular and Subcellular Biology vol. 23), pp. 127–150. Edited by Schröder H., Müller W. G... Berlin & Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  7. Becke-Goehring M.. ( 1961;). Phosphorus and its compounds, bd. 1: chemistry, von J. R. Van Wazer. Interscience Publishers, New York-London 1958. . Angew Chem 73:, 552. [CrossRef]
    [Google Scholar]
  8. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W.. ( 2013;). GenBank. . Nucleic Acids Res 41: (Database issue), D36–D42. [CrossRef][PubMed]
    [Google Scholar]
  9. Bettendorff L., Wins P.. ( 2013;). Thiamine triphosphatase and the CYTH superfamily of proteins. . FEBS J 280:, 6443–6455. [CrossRef][PubMed]
    [Google Scholar]
  10. Bonting C. F., Kortstee G. J., Zehnder A. J.. ( 1993;). Properties of polyphosphatase of Acinetobacter johnsonii 210A. . Antonie van Leeuwenhoek 64:, 75–81. [CrossRef][PubMed]
    [Google Scholar]
  11. Cardona S. T., Chávez F. P., Jerez C. A.. ( 2002;). The exopolyphosphatase gene from Sulfolobus solfataricus: characterization of the first gene found to be involved in polyphosphate metabolism in Archaea. . Appl Environ Microbiol 68:, 4812–4819. [CrossRef][PubMed]
    [Google Scholar]
  12. Cashel M., Gentry D., Hernandez V. J., Vinella D.. ( 1996;). The stringent response. . In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, , 2nd edn., pp. 1458–1496. Edited by Neidhardt F. C... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Castro C. D., Meehan A. J., Koretsky A. P., Domach M. M.. ( 1995;). In situ 31P nuclear magnetic resonance for observation of polyphosphate and catabolite responses of chemostat-cultivated Saccharomyces cerevisiae after alkalinization. . Appl Environ Microbiol 61:, 4448–4453.[PubMed]
    [Google Scholar]
  14. Choi M. Y., Wang Y., Wong L. L., Lu B. T., Chen W. Y., Huang J. D., Tanner J. A., Watt R. M.. ( 2012;). The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities. . PLoS ONE 7:, e42561. [CrossRef][PubMed]
    [Google Scholar]
  15. Delvaux D., Murty M. R., Gabelica V., Lakaye B., Lunin V. V., Skarina T., Onopriyenko O., Kohn G., Wins P.. & other authors ( 2011;). A specific inorganic triphosphatase from Nitrosomonas europaea: structure and catalytic mechanism. . J Biol Chem 286:, 34023–34035. [CrossRef][PubMed]
    [Google Scholar]
  16. Eisen J. A., Nelson K. E., Paulsen I. T., Heidelberg J. F., Wu M., Dodson R. J., Deboy R., Gwinn M. L., Nelson W. C.. & other authors ( 2002;). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. . Proc Natl Acad Sci U S A 99:, 9509–9514. [CrossRef][PubMed]
    [Google Scholar]
  17. Fang J., Ruiz F. A., Docampo M., Luo S., Rodrigues J. C. F., Motta L. S., Rohloff P., Docampo R.. ( 2007;). Overexpression of a Zn2+-sensitive soluble exopolyphosphatase from Trypanosoma cruzi depletes polyphosphate and affects osmoregulation. . J Biol Chem 282:, 32501–32510. [CrossRef][PubMed]
    [Google Scholar]
  18. Fujisawa T., Okamoto S., Katayama T., Nakao M., Yoshimura H., Kajiya-Kanegae H., Yamamoto S., Yano C., Yanaka Y.. & other authors ( 2014;). CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. . Nucleic Acids Res 42: (Database issue), D666–D670. [CrossRef][PubMed]
    [Google Scholar]
  19. Gómez-García M. R., Losada M., Serrano A.. ( 2003;). Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. . Biochem Biophys Res Commun 302:, 601–609. [CrossRef][PubMed]
    [Google Scholar]
  20. Gómez-García M. R., Losada M., Serrano A.. ( 2007;). Comparative biochemical and functional studies of family I soluble inorganic pyrophosphatases from photosynthetic bacteria. . FEBS J 274:, 3948–3959. [CrossRef][PubMed]
    [Google Scholar]
  21. Gomez-Garcia M. R., Fazeli F., Grote A., Grossman A. R., Bhaya D.. ( 2013;). Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. . J Bacteriol 195:, 3309–3319. [CrossRef][PubMed]
    [Google Scholar]
  22. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  23. Green M. R., Sambrook J.. ( 2012;). Molecular Cloning: a Laboratory Manual, , 4th edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Hernández A., Ruiz M. T.. ( 1998;). An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression. . Bioinformatics 14:, 227–228. [CrossRef][PubMed]
    [Google Scholar]
  25. Jazwinski S. M.. ( 2005;). Rtg2 protein: at the nexus of yeast longevity and aging. . FEMS Yeast Res 5:, 1253–1259. [CrossRef][PubMed]
    [Google Scholar]
  26. Jetten M. S., Fluit T. J., Stams A. J., Zehnder A. J.. ( 1992;). A fluoride-insensitive inorganic pyrophosphatase isolated from Methanothrix soehngenii. . Arch Microbiol 157:, 284–289. [CrossRef][PubMed]
    [Google Scholar]
  27. Keasling J. D., Bertsch L., Kornberg A.. ( 1993;). Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. . Proc Natl Acad Sci U S A 90:, 7029–7033. [CrossRef][PubMed]
    [Google Scholar]
  28. Keppetipola N., Jain R., Shuman S.. ( 2007;). Novel triphosphate phosphohydrolase activity of Clostridium thermocellum TTM, a member of the triphosphate tunnel metalloenzyme superfamily. . J Biol Chem 282:, 11941–11949. [CrossRef][PubMed]
    [Google Scholar]
  29. Kim K. S., Rao N. N., Fraley C. D., Kornberg A.. ( 2002;). Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. . Proc Natl Acad Sci U S A 99:, 7675–7680. [CrossRef][PubMed]
    [Google Scholar]
  30. Koenig T., Menze B. H., Kirchner M., Monigatti F., Parker K. C., Patterson T., Steen J. J., Hamprecht F. A., Steen H.. ( 2008;). Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. . J Proteome Res 7:, 3708–3717. [CrossRef][PubMed]
    [Google Scholar]
  31. Kohn G., Delvaux D., Lakaye B., Servais A. C., Scholer G., Fillet M., Elias B., Derochette J. M., Crommen J.. & other authors ( 2012;). High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved. . PLoS ONE 7:, e43879. [CrossRef][PubMed]
    [Google Scholar]
  32. Kornberg A., Rao N. N., Ault-Riché D.. ( 1999;). Inorganic polyphosphate: a molecule of many functions. . Annu Rev Biochem 68:, 89–125. [CrossRef][PubMed]
    [Google Scholar]
  33. Kristensen O., Ross B., Gajhede M.. ( 2008;). Structure of the PPX/GPPA phosphatase from Aquifex aeolicus in complex with the alarmone ppGpp. . J Mol Biol 375:, 1469–1476. [CrossRef][PubMed]
    [Google Scholar]
  34. Kulaev I. S., Vagabov V. M., Kulakovskaya T. V.. ( 2005;). The Biochemistry of Inorganic Polyphosphates, , 2nd edn.. Chichester:: Wiley;.
    [Google Scholar]
  35. Kumble K. D., Kornberg A.. ( 1995;). Inorganic polyphosphate in mammalian cells and tissues. . J Biol Chem 270:, 5818–5822. [CrossRef][PubMed]
    [Google Scholar]
  36. Kuroda A., Murphy H., Cashel M., Kornberg A.. ( 1997;). Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. . J Biol Chem 272:, 21240–21243. [CrossRef][PubMed]
    [Google Scholar]
  37. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  38. Liao X., Butow R. A.. ( 1993;). RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. . Cell 72:, 61–71. [CrossRef][PubMed]
    [Google Scholar]
  39. Lichko L. P., Kulakovskaya T. V., Kulaev I. S.. ( 2002;). Two exopolyphosphatases of Microlunatus phosphovorus, a polyphosphate-accumulating eubacterium from activated sludge. . Process Biochem 37:, 799–803. [CrossRef]
    [Google Scholar]
  40. Lichko L. P., Andreeva N. A., Kulakovskaya T. V., Kulaev I. S.. ( 2003;). Exopolyphosphatases of the yeast Saccharomyces cerevisiae. . FEMS Yeast Res 3:, 233–238. [CrossRef][PubMed]
    [Google Scholar]
  41. Lindner S. N., Knebel S., Wesseling H., Schoberth S. M., Wendisch V. F.. ( 2009;). Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. . Appl Environ Microbiol 75:, 3161–3170. [CrossRef][PubMed]
    [Google Scholar]
  42. Markham G. D., Hafner E. W., Tabor C. W., Tabor H.. ( 1980;). S-Adenosylmethionine synthetase from Escherichia coli. . J Biol Chem 255:, 9082–9092.[PubMed]
    [Google Scholar]
  43. Mechold U., Potrykus K., Murphy H., Murakami K. S., Cashel M.. ( 2013;). Differential regulation by ppGpp versus pppGpp in Escherichia coli. . Nucleic Acids Res 41:, 6175–6189. [CrossRef][PubMed]
    [Google Scholar]
  44. Moeder W., Garcia-Petit C., Ung H., Fucile G., Samuel M. A., Christendat D., Yoshioka K.. ( 2013;). Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development. . Plant J 76:, 615–626. [CrossRef][PubMed]
    [Google Scholar]
  45. Moreno B., Urbina J. A., Oldfield E., Bailey B. N., Rodrigues C. O., Docampo R.. ( 2000;). 31P NMR spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Evidence for high levels of condensed inorganic phosphates. . J Biol Chem 275:, 28356–28362. [CrossRef][PubMed]
    [Google Scholar]
  46. Müller F., Mutch N. J., Schenk W. A., Smith S. A., Esterl L., Spronk H. M., Schmidbauer S., Gahl W. A., Morrissey J. H., Renné T.. ( 2009;). Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. . Cell 139:, 1143–1156. [CrossRef][PubMed]
    [Google Scholar]
  47. Nikel P. I., Chavarría M., Martínez-García E., Taylor A. C., de Lorenzo V.. ( 2013;). Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. . Microb Cell Fact 12:, 50. [CrossRef][PubMed]
    [Google Scholar]
  48. Nordberg H., Cantor M., Dusheyko S., Hua S., Poliakov A., Shabalov I., Smirnova T., Grigoriev I. V., Dubchak I.. ( 2014;). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. . Nucleic Acids Res 42: (Database issue), D26–D31. [CrossRef][PubMed]
    [Google Scholar]
  49. Ogawa N., Tzeng C. M., Fraley C. D., Kornberg A.. ( 2000;). Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. . J Bacteriol 182:, 6687–6693. [CrossRef][PubMed]
    [Google Scholar]
  50. Pérez Mato I., Sanchez del Pino M. M., Chamberlin M. E., Mudd S. H., Mato J. M., Corrales F. J.. ( 2001;). Biochemical basis for the dominant inheritance of hypermethioninemia associated with the R264H mutation of the MAT1A gene. A monomeric methionine adenosyltransferase with tripolyphosphatase activity. . J Biol Chem 276:, 13803–13809.[PubMed]
    [Google Scholar]
  51. Pick U., Weiss M.. ( 1991;). Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella salina. . Plant Physiol 97:, 1234–1240. [CrossRef][PubMed]
    [Google Scholar]
  52. Rangarajan E. S., Nadeau G., Li Y., Wagner J., Hung M. N., Schrag J. D., Cygler M., Matte A.. ( 2006;). The structure of the exopolyphosphatase (PPX) from Escherichia coli O157 : H7 suggests a binding mode for long polyphosphate chains. . J Mol Biol 359:, 1249–1260. [CrossRef][PubMed]
    [Google Scholar]
  53. Rao N. N., Gómez-García M. R., Kornberg A.. ( 2009;). Inorganic polyphosphate: essential for growth and survival. . Annu Rev Biochem 78:, 605–647. [CrossRef][PubMed]
    [Google Scholar]
  54. Rashid M. H., Kornberg A.. ( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 97:, 4885–4890. [CrossRef][PubMed]
    [Google Scholar]
  55. Reizer J., Reizer A., Saier M. H. Jr, Bork P., Sander C.. ( 1993;). Exopolyphosphate phosphatase and guanosine pentaphosphate phosphatase belong to the sugar kinase/actin/hsp70 superfamily. . Trends Biochem Sci 18:, 247–248. [CrossRef][PubMed]
    [Google Scholar]
  56. Rodrigues C. O., Ruiz F. A., Vieira M., Hill J. E., Docampo R.. ( 2002;). An acidocalcisomal exopolyphosphatase from Leishmania major with high affinity for short chain polyphosphate. . J Biol Chem 277:, 50899–50906. [CrossRef][PubMed]
    [Google Scholar]
  57. Schuddemat J., de Boo R., van Leeuwen C. C., van den Broek P. J., van Steveninck J.. ( 1989;). Polyphosphate synthesis in yeast. . Biochim Biophys Acta 1010:, 191–198. [CrossRef][PubMed]
    [Google Scholar]
  58. Seidlmayer L. K., Gomez-Garcia M. R., Blatter L. A., Pavlov E., Dedkova E. N.. ( 2012;). Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. . J Gen Physiol 139:, 321–331. [CrossRef][PubMed]
    [Google Scholar]
  59. Serrano A., Pérez-Castiñeira J. R., Baltscheffsky M., Baltscheffsky H.. ( 2007;). H+-PPases: yesterday, today and tomorrow. . IUBMB Life 59:, 76–83. [CrossRef][PubMed]
    [Google Scholar]
  60. Sethuraman A., Rao N. N., Kornberg A.. ( 2001;). The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. . Proc Natl Acad Sci U S A 98:, 8542–8547. [CrossRef][PubMed]
    [Google Scholar]
  61. Shi X., Rao N. N., Kornberg A.. ( 2004;). Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. . Proc Natl Acad Sci U S A 101:, 17061–17065. [CrossRef][PubMed]
    [Google Scholar]
  62. Tammenkoski M., Koivula K., Cusanelli E., Zollo M., Steegborn C., Baykov A. A., Lahti R.. ( 2008;). Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. . Biochemistry 47:, 9707–9713. [CrossRef][PubMed]
    [Google Scholar]
  63. UniProt Consortium ( 2014;). Activities at the Universal Protein Resource (UniProt). . Nucleic Acids Res 42: (Database issue), D191–D198. [CrossRef][PubMed]
    [Google Scholar]
  64. Urech K., Dürr M., Boller T., Wiemken A., Schwencke J.. ( 1978;). Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. . Arch Microbiol 116:, 275–278. [CrossRef][PubMed]
    [Google Scholar]
  65. Wahlund T. M., Woese C. R., Castenholz R. W., Madigan M. T.. ( 1991;). A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. . Arch Microbiol 156:, 81–90. [CrossRef]
    [Google Scholar]
  66. Zhang H., Gómez-García M. R., Brown M. R., Kornberg A.. ( 2005;). Inorganic polyphosphate in Dictyostelium discoideum: influence on development, sporulation, and predation. . Proc Natl Acad Sci U S A 102:, 2731–2735. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080952-0
Loading
/content/journal/micro/10.1099/mic.0.080952-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error