1887

Abstract

Subunit–subunit interactions of the classical and alternate chaperone–usher (CU) systems have been shown to proceed through a donor strand exchange (DSE) mechanism. However, it is not known whether DSE is required for intersubunit interactions in the archaic CU system. We have previously shown that the Mcu system, a member of the archaic CU family that functions in spore coat formation, is likely to use the principle of donor strand complementation to medicate chaperone–subunit interactions analogous to the classical CU pathway. Here we describe the results of studies on Mcu subunit–subunit interactions. We constructed a series of N-terminal-deleted, single amino acid-mutated and donor strand-complemented Mcu subunits, and characterized their abilities to participate in subunit–subunit interactions. It appears that certain residues in both the N and C termini of McuA, a subunit of the Mcu system, play a critical role in intersubunit interactions and these interactions may involve the general principle of DSE of the classical and alternate CU systems. In addition, the specificity of the CU system for Mcu subunits over other spore coat proteins is demonstrated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080457-0
2014-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2200.html?itemId=/content/journal/micro/10.1099/mic.0.080457-0&mimeType=html&fmt=ahah

References

  1. Barnhart M. M., Pinkner J. S., Soto G. E., Sauer F. G., Langermann S., Waksman G., Frieden C., Hultgren S. J.. ( 2000;). PapD-like chaperones provide the missing information for folding of pilin proteins. . Proc Natl Acad Sci U S A 97:, 7709–7714. [CrossRef][PubMed]
    [Google Scholar]
  2. Bullitt E., Jones C. H., Striker R., Soto G., Jacob-Dubuisson F., Pinkner J., Wick M. J., Makowski L., Hultgren S. J.. ( 1996;). Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper. . Proc Natl Acad Sci U S A 93:, 12890–12895. [CrossRef][PubMed]
    [Google Scholar]
  3. Choudhury D., Thompson A., Stojanoff V., Langermann S., Pinkner J., Hultgren S. J., Knight S. D.. ( 1999;). X-ray structure of the FimC–FimH chaperone–adhesin complex from uropathogenic Escherichia coli. . Science 285:, 1061–1066. [CrossRef][PubMed]
    [Google Scholar]
  4. Dahl J. L., Tengra F. K., Dutton D., Yan J., Andacht T. M., Coyne L., Windell V., Garza A. G.. ( 2007;). Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach. . J Bacteriol 189:, 3187–3197. [CrossRef][PubMed]
    [Google Scholar]
  5. Fronzes R., Remaut H., Waksman G.. ( 2008;). Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. . EMBO J 27:, 2271–2280. [CrossRef][PubMed]
    [Google Scholar]
  6. Giraud C., Bernard C. S., Calderon V., Yang L., Filloux A., Molin S., Fichant G., Bordi C., de Bentzmann S.. ( 2011;). The PprA–PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone–usher pathway system assembling fimbriae. . Environ Microbiol 13:, 666–683. [CrossRef][PubMed]
    [Google Scholar]
  7. Gollop R., Inouye M., Inouye S.. ( 1991;). Protein U, a late-developmental spore coat protein of Myxococcus xanthus, is a secretory protein. . J Bacteriol 173:, 3597–3600.[PubMed]
    [Google Scholar]
  8. Hodgkin J., Kaiser D.. ( 1979;). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. . Mol Gen Genetics 171:, 177–191. [CrossRef]
    [Google Scholar]
  9. Horton R. M., Ho S. N., Pullen J. K., Hunt H. D., Cai Z., Pease L. R.. ( 1993;). Gene splicing by overlap extension. . Methods Enzymol 217:, 270–279. [CrossRef][PubMed]
    [Google Scholar]
  10. Hung D. L., Knight S. D., Woods R. M., Pinkner J. S., Hultgren S. J.. ( 1996;). Molecular basis of two subfamilies of immunoglobulin-like chaperones. . EMBO J 15:, 3792–3805.[PubMed]
    [Google Scholar]
  11. Inouye M., Inouye S., Zusman D. R.. ( 1979;). Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. . Proc Natl Acad Sci U S A 76:, 209–213. [CrossRef][PubMed]
    [Google Scholar]
  12. Julien B., Kaiser A. D., Garza A.. ( 2000;). Spatial control of cell differentiation in Myxococcus xanthus. . Proc Natl Acad Sci U S A 97:, 9098–9103. [CrossRef][PubMed]
    [Google Scholar]
  13. Kaiser D.. ( 1979;). Social gliding is correlated with the presence of pili in Myxococcus xanthus. . Proc Natl Acad Sci USA 76:, 5952–5956. [CrossRef][PubMed]
    [Google Scholar]
  14. Kashefi K., Hartzell P. L.. ( 1995;). Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. . Mol Microbiol 15:, 483–494. [CrossRef][PubMed]
    [Google Scholar]
  15. Krasan G. P., Sauer F. G., Cutter D., Farley M. M., Gilsdorf J. R., Hultgren S. J., St Geme J. W. III. ( 2000;). Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili. . Mol Microbiol 35:, 1335–1347. [CrossRef][PubMed]
    [Google Scholar]
  16. Leng X., Zhu W., Jin J., Mao X.. ( 2011;). Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation. . Microbiology 157:, 1886–1896. [CrossRef][PubMed]
    [Google Scholar]
  17. McCleary W. R., Esmon B., Zusman D. R.. ( 1991;). Myxococcus xanthus protein C is a major spore surface protein. . J Bacteriol 173:, 2141–2145.[PubMed]
    [Google Scholar]
  18. Nelson D. R., Zusman D. R.. ( 1983;). Transport and localization of protein S, a spore coat protein, during fruiting body formation by Myxococcus xanthus. . J Bacteriol 154:, 547–553.[PubMed]
    [Google Scholar]
  19. Nuccio S.-P., Bäumler A. J.. ( 2007;). Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. . Microbiol Mol Biol Rev 71:, 551–575. [CrossRef][PubMed]
    [Google Scholar]
  20. Poole S. T., McVeigh A. L., Anantha R. P., Lee L. H., Akay Y. M., Pontzer E. A., Scott D. A., Bullitt E., Savarino S. J.. ( 2007;). Donor strand complementation governs intersubunit interaction of fimbriae of the alternate chaperone pathway. . Mol Microbiol 63:, 1372–1384. [CrossRef][PubMed]
    [Google Scholar]
  21. Roy S. P., Rahman M. M., Yu X. D., Tuittila M., Knight S. D., Zavialov A. V.. ( 2012;). Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. . Mol Microbiol 86:, 1100–1115. [CrossRef][PubMed]
    [Google Scholar]
  22. Sauer F. G., Fütterer K., Pinkner J. S., Dodson K. W., Hultgren S. J., Waksman G.. ( 1999;). Structural basis of chaperone function and pilus biogenesis. . Science 285:, 1058–1061. [CrossRef][PubMed]
    [Google Scholar]
  23. Shi X., Wegener-Feldbrügge S., Huntley S., Hamann N., Hedderich R., Søgaard-Andersen L.. ( 2008;). Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. . J Bacteriol 190:, 613–624. [CrossRef][PubMed]
    [Google Scholar]
  24. Soto G. E., Dodson K. W., Ogg D., Liu C., Heuser J., Knight S., Kihlberg J., Jones C. H., Hultgren S. J.. ( 1998;). Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. . EMBO J 17:, 6155–6167. [CrossRef][PubMed]
    [Google Scholar]
  25. Starks A. M., Froehlich B. J., Jones T. N., Scott J. R.. ( 2006;). Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. . J Bacteriol 188:, 231–239. [CrossRef][PubMed]
    [Google Scholar]
  26. Thanassi D. G., Bliska J. B., Christie P. J.. ( 2012;). Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. . FEMS Microbiol Rev 36:, 1046–1082. [CrossRef][PubMed]
    [Google Scholar]
  27. Tomaras A. P., Dorsey C. W., Edelmann R. E., Actis L. A.. ( 2003;). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone–usher pili assembly system. . Microbiology 149:, 3473–3484. [CrossRef][PubMed]
    [Google Scholar]
  28. Waksman G., Hultgren S. J.. ( 2009;). Structural biology of the chaperone–usher pathway of pilus biogenesis. . Nat Rev Microbiol 7:, 765–774. [CrossRef][PubMed]
    [Google Scholar]
  29. Zavialov A. V., Kersley J., Korpela T., Zav’yalov V. P., MacIntyre S., Knight S. D.. ( 2002;). Donor strand complementation mechanism in the biogenesis of non-pilus systems. . Mol Microbiol 45:, 983–995. [CrossRef][PubMed]
    [Google Scholar]
  30. Zavialov A. V., Berglund J., Pudney A. F., Fooks L. J., Ibrahim T. M., MacIntyre S., Knight S. D.. ( 2003;). Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. . Cell 113:, 587–596. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhu W., Wu M., Cao S., Peng Y., Mao X.. ( 2013;). Characterization of McuB, a periplasmic chaperone-like protein involved in the assembly of Myxococcus spore coat. . J Bacteriol 195:, 3105–3114. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080457-0
Loading
/content/journal/micro/10.1099/mic.0.080457-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error