1887

Abstract

LytF plays a principal role in cell separation through its localization at the septa and poles on the vegetative cell surface. In this study, we found that a mutation in a major lipoteichoic acid (LTA) synthase gene – – results in a considerable reduction in the σ-dependent transcription of . The transcription was also reduced in mutants that affected glycolipid anchor biosynthesis. Immunofluorescence microscopy revealed that both the numbers of cells expressing LytF and the LytF foci in these mutants were decreased. In addition, the transcriptional activity of was almost abolished in the double (), triple (), and quadruple () mutants during vegetative growth. Cell separation defects in these mutants were partially restored with artificial expression of LytF. Interestingly, when transcription was induced in the single or multiple mutants, LytF was localized not only at the septum, but also along the sidewall. The amounts of LytF bound to cell wall in the single () and double () mutants gradually increased as compared with that in the WT strain, and those in the triple () and quadruple mutants were almost similar to that in the double mutant. Moreover, reduction of the transcription and chained cell morphology in the mutant were completely restored with artificial induction of the gene. These results strongly suggest that LTA influences the temporal, σ-dependent transcription of and is an additional inhibitory component to the vegetative cell separation enzyme LytF.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080366-0
2014-12-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2639.html?itemId=/content/journal/micro/10.1099/mic.0.080366-0&mimeType=html&fmt=ahah

References

  1. Allison S. E., D’Elia M. A., Arar S., Monteiro M. A., Brown E. D.. ( 2011;). Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. J Biol Chem286:23708–23716 [CrossRef][PubMed]
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J.. ( 1961;). Requirements for Transformation in Bacillus subtilis. . J Bacteriol81:741–746[PubMed]
    [Google Scholar]
  3. Antelmann H., Yamamoto H., Sekiguchi J., Hecker M.. ( 2002;). Stabilization of cell wall proteins in Bacillus subtilis: a proteomic approach. Proteomics2:591–602 [CrossRef][PubMed]
    [Google Scholar]
  4. Baba T., Schneewind O.. ( 1998;). Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. . EMBO J17:4639–4646 [CrossRef][PubMed]
    [Google Scholar]
  5. Eiamphungporn W., Helmann J. D.. ( 2008;). The Bacillus subtilis σ(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol67:830–848 [CrossRef][PubMed]
    [Google Scholar]
  6. Fedtke I., Mader D., Kohler T., Moll H., Nicholson G., Biswas R., Henseler K., Götz F., Zähringer U., Peschel A.. ( 2007;). A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol65:1078–1091 [CrossRef][PubMed]
    [Google Scholar]
  7. Foster S. J., Popham D. L.. ( 2001;). Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers, and capsules. Bacillus subtilis and its Closest Relatives: From Genes to Cells21–41 Sonenshein A. L., Losick R., Hoch J. A.. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  8. Fukushima T., Ishikawa S., Yamamoto H., Ogasawara N., Sekiguchi J.. ( 2003;). Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis . J Biochem133:475–483 [CrossRef][PubMed]
    [Google Scholar]
  9. Fukushima T., Afkham A., Kurosawa S., Tanabe T., Yamamoto H., Sekiguchi J.. ( 2006;). A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis . J Bacteriol188:5541–5550[CrossRef]
    [Google Scholar]
  10. Gründling A., Schneewind O.. ( 2007a;). Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. . Proc Natl Acad Sci U S A104:8478–8483 [CrossRef][PubMed]
    [Google Scholar]
  11. Gründling A., Schneewind O.. ( 2007b;). Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. . J Bacteriol189:2521–2530 [CrossRef][PubMed]
    [Google Scholar]
  12. Hashimoto M., Seki T., Matsuoka S., Hara H., Asai K., Sadaie Y., Matsumoto K.. ( 2013;). Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with defects in lipoteichoic acid synthesis. Microbiology159:23–35 [CrossRef][PubMed]
    [Google Scholar]
  13. Hyyryläinen H. L., Vitikainen M., Thwaite J., Wu H., Sarvas M., Harwood C. R., Kontinen V. P., Stephenson K.. ( 2000;). d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. . J Biol Chem275:26696–26703[PubMed]
    [Google Scholar]
  14. Jervis A. J., Thackray P. D., Houston C. W., Horsburgh M. J., Moir A.. ( 2007;). SigM-responsive genes of Bacillus subtilis and their promoters. J Bacteriol189:4534–4538 [CrossRef][PubMed]
    [Google Scholar]
  15. Jorasch P., Wolter F. P., Zähringer U., Heinz E.. ( 1998;). A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol29:419–430 [CrossRef][PubMed]
    [Google Scholar]
  16. Kiriukhin M. Y., Debabov D. V., Shinabarger D. L., Neuhaus F. C.. ( 2001;). Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol183:3506–3514 [CrossRef][PubMed]
    [Google Scholar]
  17. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  18. Lazarevic V., Pooley H. M., Mauël C., Karamata D.. ( 2002;). Teichoic and teichuronic acids from Gram-positive bacteria. Biopolymers, Polysaccharides I: Polysaccharides from Prokaryotes465–492 Vandamme E. J., DeBaets S., Steinbüchel A.. Weinheim: Wiley- VCH;
    [Google Scholar]
  19. Lazarevic V., Soldo B., Médico N., Pooley H., Bron S., Karamata D.. ( 2005;). Bacillus subtilis α-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol71:39–45 [CrossRef][PubMed]
    [Google Scholar]
  20. Margot P., Mauël C., Karamata D.. ( 1994;). The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol12:535–545 [CrossRef][PubMed]
    [Google Scholar]
  21. Margot P., Pagni M., Karamata D.. ( 1999;). Bacillus subtilis 168 gene lytF encodes a γ-d-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, . D Microbiology145:57–65 [CrossRef][PubMed]
    [Google Scholar]
  22. Matias V. R., Beveridge T. J.. ( 2005;). Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol56:240–251 [CrossRef][PubMed]
    [Google Scholar]
  23. Matias V. R., Beveridge T. J.. ( 2006;). Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. . J Bacteriol188:1011–1021 [CrossRef][PubMed]
    [Google Scholar]
  24. Matias V. R., Beveridge T. J.. ( 2008;). Lipoteichoic acid is a major component of the Bacillus subtilis periplasm. J Bacteriol190:7414–7418 [CrossRef][PubMed]
    [Google Scholar]
  25. May J. J., Finking R., Wiegeshoff F., Weber T. T., Bandur N., Koert U., Marahiel M. A.. ( 2005;). Inhibition of the d-alanine:d-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J272:2993–3003 [CrossRef][PubMed]
    [Google Scholar]
  26. Moriwaki H., Yamamoto H.. ( 2013;). Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology. Appl Microbiol Biotechnol97:1–8 [CrossRef][PubMed]
    [Google Scholar]
  27. Moriwaki H., Koide R., Yoshikawa R., Warabino Y., Yamamoto H.. ( 2013;). Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. . Appl Microbiol Biotechnol97:3721–3728 [CrossRef][PubMed]
    [Google Scholar]
  28. Neuhaus F. C., Baddiley J.. ( 2003;). A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev67:686–723 [CrossRef][PubMed]
    [Google Scholar]
  29. Ohnishi R., Ishikawa S., Sekiguchi J.. ( 1999;). Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. . J Bacteriol181:3178–3184[PubMed]
    [Google Scholar]
  30. Oku Y., Kurokawa K., Matsuo M., Yamada S., Lee B. L., Sekimizu K.. ( 2009;). Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol191:141–151 [CrossRef][PubMed]
    [Google Scholar]
  31. Oshida T., Sugai M., Komatsuzawa H., Hong Y. M., Suginaka H., Tomasz A.. ( 1995;). A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A92:285–289 [CrossRef][PubMed]
    [Google Scholar]
  32. Rahman O., Dover L. G., Sutcliffe I. C.. ( 2009;). Lipoteichoic acid biosynthesis: two steps forwards, one step sideways?. Trends Microbiol17:219–225 [CrossRef][PubMed]
    [Google Scholar]
  33. Rashid M. H., Mori M., Sekiguchi J.. ( 1995;). Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology141:2391–2404 [CrossRef][PubMed]
    [Google Scholar]
  34. Reichmann N. T., Gründling A.. ( 2011;). Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. . FEMS Microbiol Lett319:97–105 [CrossRef][PubMed]
    [Google Scholar]
  35. Salzberg L. I., Helmann J. D.. ( 2008;). Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol190:7797–7807 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  37. Schirner K., Marles-Wright J., Lewis R. J., Errington J.. ( 2009;). Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. . EMBO J28:830–842 [CrossRef][PubMed]
    [Google Scholar]
  38. Schlag M., Biswas R., Krismer B., Kohler T., Zoll S., Yu W., Schwarz H., Peschel A., Götz F.. ( 2010;). Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol75:864–873 [CrossRef][PubMed]
    [Google Scholar]
  39. Shimotsu H., Henner D. J.. ( 1986;). Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J Bacteriol168:380–388[PubMed]
    [Google Scholar]
  40. Smith T. J., Blackman S. A., Foster S. J.. ( 2000;). Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology146:249–262[PubMed]
    [Google Scholar]
  41. Soldo B., Lazarevic V., Margot P., Karamata D.. ( 1993;). Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol139:3185–3195 [CrossRef][PubMed]
    [Google Scholar]
  42. Steen A., Buist G., Leenhouts K. J., El Khattabi M., Grijpstra F., Zomer A. L., Venema G., Kuipers O. P., Kok J.. ( 2003;). Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem278:23874–23881 [CrossRef][PubMed]
    [Google Scholar]
  43. Sutcliffe I. C.. ( 2011;). Priming and elongation: dissection of the lipoteichoic acid biosynthetic pathway in Gram-positive bacteria. Mol Microbiol79:553–556 [CrossRef][PubMed]
    [Google Scholar]
  44. Vagner V., Dervyn E., Ehrlich S. D.. ( 1998;). A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104[CrossRef]
    [Google Scholar]
  45. Weart R. B., Lee A. H., Chien A. C., Haeusser D. P., Hill N. S., Levin P. A.. ( 2007;). A metabolic sensor governing cell size in bacteria. Cell130:335–347 [CrossRef][PubMed]
    [Google Scholar]
  46. Wörmann M. E., Corrigan R. M., Simpson P. J., Matthews S. J., Gründling A.. ( 2011;). Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Mol Microbiol79:566–583 [CrossRef][PubMed]
    [Google Scholar]
  47. Yamada S., Sugai M., Komatsuzawa H., Nakashima S., Oshida T., Matsumoto A., Suginaka H.. ( 1996;). An autolysin ring associated with cell separation of Staphylococcus aureus. . J Bacteriol178:1565–1571[PubMed]
    [Google Scholar]
  48. Yamamoto H., Kurosawa S., Sekiguchi J.. ( 2003;). Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol185:6666–6677 [CrossRef][PubMed]
    [Google Scholar]
  49. Yamamoto H., Hashimoto M., Higashitsuji Y., Harada H., Hariyama N., Takahashi L., Iwashita T., Ooiwa S., Sekiguchi J.. ( 2008a;). Post-translational control of vegetative cell separation enzymes through a direct interaction with specific inhibitor IseA in Bacillus subtilis. . Mol Microbiol70:168–182 [CrossRef][PubMed]
    [Google Scholar]
  50. Yamamoto H., Miyake Y., Hisaoka M., Kurosawa S., Sekiguchi J.. ( 2008b;). The major and minor wall teichoic acids prevent the sidewall localization of vegetative dl-endopeptidase LytF in Bacillus subtilis. . Mol Microbiol70:297–310 [CrossRef][PubMed]
    [Google Scholar]
  51. Zuber B., Haenni M., Ribeiro T., Minnig K., Lopes F., Moreillon P., Dubochet J.. ( 2006;). Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J Bacteriol188:6652–6660 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080366-0
Loading
/content/journal/micro/10.1099/mic.0.080366-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error