1887

Abstract

Two genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn-responsive DNA-binding motif () is present in the promoter regions of these genes. Both proteins were further studied with respect to their involvement in zinc homeostasis and invasion of the host. EF0759 contributed to intramacrophage survival by an as-yet unknown mechanism(s). EF1400, here renamed ZntA, is an ATPase with specificity for zinc and plays a role in dealing with several host defences, i.e. zinc overload, oxidative stress and lysozyme; it provides cells with the ability to survive inside macrophages. As these three host defence mechanisms are important at several sites in the host, i.e. inside macrophages and in saliva, this work suggested that ZntA constitutes a crucial defence mechanism that is likely to contribute to the ability of this bacterium to endure life inside its host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080341-0
2014-12-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2755.html?itemId=/content/journal/micro/10.1099/mic.0.080341-0&mimeType=html&fmt=ahah

References

  1. Abrantes M. C., Lopes M. F., Kok J..( 2011;). Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583. PLoS ONE6:e26519 [CrossRef][PubMed]
    [Google Scholar]
  2. Abrantes M. C., Kok J., Lopes M. F..( 2013;). EfaR is a major regulator of Enterococcus faecalis manganese transporters and influences processes involved in host colonization and infection. Infect Immun81:935–944 [CrossRef][PubMed]
    [Google Scholar]
  3. Agranoff D., Krishna S..( 2004;). Metal ion transport and regulation in Mycobacterium tuberculosis. Front Biosci9:2996–3006 [CrossRef][PubMed]
    [Google Scholar]
  4. Alix E., Blanc-Potard A. B..( 2007;). MgtC: a key player in intramacrophage survival. Trends Microbiol15:252–256 [CrossRef][PubMed]
    [Google Scholar]
  5. Arias C. A., Murray B. E..( 2012;). The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol10:266–278 [CrossRef][PubMed]
    [Google Scholar]
  6. Bennett H. J., Pearce D. M., Glenn S., Taylor C. M., Kuhn M., Sonenshein A. L., Andrew P. W., Roberts I. S..( 2007;). Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol Microbiol63:1453–1467 [CrossRef][PubMed]
    [Google Scholar]
  7. Blencowe D. K., Morby A. P..( 2003;). Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev27:291–311 [CrossRef][PubMed]
    [Google Scholar]
  8. Botella H., Peyron P., Levillain F., Poincloux R., Poquet Y., Brandli I., Wang C., Tailleux L., Tilleul S..& other authors ( 2011;). Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe10:248–259 [CrossRef][PubMed]
    [Google Scholar]
  9. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P..( 1999;). ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol31:893–902 [CrossRef][PubMed]
    [Google Scholar]
  10. Bublitz M., Morth J. P., Nissen P..( 2011;). P-type ATPases at a glance. J Cell Sci124:2515–2519 [CrossRef][PubMed]
    [Google Scholar]
  11. Chicharro J. L., Serrano V., Ureña R., Gutierrez A. M., Carvajal A., Fernández-Hernando P., Lucía A..( 1999;). Trace elements and electrolytes in human resting mixed saliva after exercise. Br J Sports Med33:204–207 [CrossRef][PubMed]
    [Google Scholar]
  12. Giard J. C., Laplace J. M., Rincé A., Pichereau V., Benachour A., Leboeuf C., Flahaut S., Auffray Y., Hartke A..( 2001;). The stress proteome of Enterococcus faecalis. Electrophoresis22:2947–2954 [CrossRef][PubMed]
    [Google Scholar]
  13. Gordon S., Todd J., Cohn Z. A..( 1974;). In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. J Exp Med139:1228–1248 [CrossRef][PubMed]
    [Google Scholar]
  14. Günzel D., Kucharski L. M., Kehres D. G., Romero M. F., Maguire M. E..( 2006;). The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase. J Bacteriol188:5586–5594 [CrossRef][PubMed]
    [Google Scholar]
  15. Helbig K., Bleuel C., Krauss G. J., Nies D. H..( 2008;). Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol190:5431–5438 [CrossRef][PubMed]
    [Google Scholar]
  16. Jakubovics N. S., Jenkinson H. F..( 2001;). Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology147:1709–1718[PubMed]
    [Google Scholar]
  17. Kloosterman T. G., Witwicki R. M., van der Kooi-Pol M. M., Bijlsma J. J., Kuipers O. P..( 2008;). Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J Bacteriol190:5382–5393 [CrossRef][PubMed]
    [Google Scholar]
  18. Korhonen J., Martinmäki P., Pizzi C., Rastas P., Ukkonen E..( 2009;). moods: fast search for position weight matrix matches in DNA sequences. Bioinformatics25:3181–3182 [CrossRef][PubMed]
    [Google Scholar]
  19. Larsen R., Buist G., Kuipers O. P., Kok J..( 2004;). ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis. J Bacteriol186:1147–1157 [CrossRef][PubMed]
    [Google Scholar]
  20. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K..( 1995;). A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol177:7011–7018[PubMed]
    [Google Scholar]
  21. Le Breton Y., Boël G., Benachour A., Prévost H., Auffray Y., Rincé A..( 2003;). Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol5:329–337 [CrossRef][PubMed]
    [Google Scholar]
  22. Le Jeune A., Torelli R., Sanguinetti M., Giard J. C., Hartke A., Auffray Y., Benachour A..( 2010;). The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. PLoS ONE5:e9658 [CrossRef][PubMed]
    [Google Scholar]
  23. Maguin E., Duwat P., Hege T., Ehrlich D., Gruss A..( 1992;). New thermosensitive plasmid for gram-positive bacteria. J Bacteriol174:5633–5638[PubMed]
    [Google Scholar]
  24. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D..( 2003;). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol50:1591–1604 [CrossRef][PubMed]
    [Google Scholar]
  25. McDevitt C. A., Ogunniyi A. D., Valkov E., Lawrence M. C., Kobe B., McEwan A. G., Paton J. C..( 2011;). A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog7:e1002357 [CrossRef][PubMed]
    [Google Scholar]
  26. Miller J..( 1972;). Experiments in Molecular Genetics352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Nies D. H..( 2007;). Biochemistry. How cells control zinc homeostasis. Science317:1695–1696 [CrossRef][PubMed]
    [Google Scholar]
  28. Outten C. E., O’Halloran T. V..( 2001;). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science292:2488–2492 [CrossRef][PubMed]
    [Google Scholar]
  29. Plüddemann A., Mukhopadhyay S., Gordon S..( 2011;). Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev240:11–24 [CrossRef][PubMed]
    [Google Scholar]
  30. Powell J. J., Greenfield S. M., Thompson R. P..( 1992;). Concentrations of metals in gastric juice in health and peptic ulcer disease. Gut33:1617–1620 [CrossRef][PubMed]
    [Google Scholar]
  31. Prasad A. S..( 2009;). Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care12:646–652 [CrossRef][PubMed]
    [Google Scholar]
  32. Ralph P., Moore M. A., Nilsson K..( 1976;). Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med143:1528–1533 [CrossRef][PubMed]
    [Google Scholar]
  33. Rigottier-Gois L., Alberti A., Houel A., Taly J. F., Palcy P., Manson J., Pinto D., Matos R. C., Carrilero L..& other authors ( 2011;). Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS ONE6:e29023 [CrossRef][PubMed]
    [Google Scholar]
  34. Rincé A., Flahaut S., Auffray Y..( 2000;). Identification of general stress genes in Enterococcus faecalis. Int J Food Microbiol55:87–91 [CrossRef][PubMed]
    [Google Scholar]
  35. Rincé A., Le Breton Y., Verneuil N., Giard J. C., Hartke A., Auffray Y..( 2003;). Physiological and molecular aspects of bile salt response in Enterococcus faecalis. Int J Food Microbiol88:207–213 [CrossRef][PubMed]
    [Google Scholar]
  36. Sharma R., Rensing C., Rosen B. P., Mitra B..( 2000;). The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem275:3873–3878 [CrossRef][PubMed]
    [Google Scholar]
  37. Singh V. K., Xiong A., Usgaard T. R., Chakrabarti S., Deora R., Misra T. K., Jayaswal R. K..( 1999;). ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol Microbiol33:200–207 [CrossRef][PubMed]
    [Google Scholar]
  38. Somerville G. A., Proctor R. A..( 2009;). At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev73:233–248 [CrossRef][PubMed]
    [Google Scholar]
  39. Tao T., Snavely M. D., Farr S. G., Maguire M. E..( 1995;). Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J Bacteriol177:2654–2662[PubMed]
    [Google Scholar]
  40. Tao T., Grulich P. F., Kucharski L. M., Smith R. L., Maguire M. E..( 1998;). Magnesium transport in Salmonella typhimurium: biphasic magnesium and time dependence of the transcription of the mgtA and mgtCB loci. Microbiology144:655–664 [CrossRef][PubMed]
    [Google Scholar]
  41. Verneuil N., Sanguinetti M., Le Breton Y., Posteraro B., Fadda G., Auffray Y., Hartke A., Giard J. C..( 2004;). Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun72:4424–4431 [CrossRef][PubMed]
    [Google Scholar]
  42. Versieck J., McCall J. T..( 1985;). Trace elements in human body fluids and tissues. Crit Rev Clin Lab Sci22:97–184 [CrossRef][PubMed]
    [Google Scholar]
  43. Wagner D., Maser J., Lai B., Cai Z., Barry C. E. III, Höner Zu Bentrup K., Russell D. G., Bermudez L. E..( 2005;). Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J Immunol174:1491–1500 [CrossRef][PubMed]
    [Google Scholar]
  44. Xiong A., Jayaswal R. K..( 1998;). Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J Bacteriol180:4024–4029[PubMed]
    [Google Scholar]
  45. Yan X., Zhao C., Budin-Verneuil A., Hartke A., Rincé A., Gilmore M. S., Auffray Y., Pichereau V..( 2009;). The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology155:3226–3237 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080341-0
Loading
/content/journal/micro/10.1099/mic.0.080341-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error