1887

Abstract

Using a gene disruption strategy, we generated mutants in the locus of the plant-beneficial fungus that were no longer capable of producing gliotoxin. Phenotypic assays demonstrated that the -disrupted mutants grew faster, were more sensitive to oxidative stress and exhibited a sparse colony edge compared with the WT strain. In a plate confrontation assay, the mutants deficient in gliotoxin production were ineffective as mycoparasites against the oomycete, , and the necrotrophic fungal pathogen, , but retained mycoparasitic ability against . Biocontrol assays in soil showed that the mutants were incapable of protecting cotton seedlings from attack by , against which the WT strain was highly effective. The mutants, however, were as effective as the WT strain in protecting cotton seedlings against . Loss of gliotoxin production also resulted in a reduced ability of the mutants to attack the sclerotia of compared with the WT. The addition of exogenous gliotoxin to the sclerotia colonized by the mutants partially restored their degradative abilities. Interestingly, as in , an opportunistic human pathogen, gliotoxin was found to be involved in pathogenicity of against larvae of the wax moth, . The loss of gliotoxin production in was restored by complementation with the gene from . We have, thus, demonstrated that the putative cluster of is responsible for the biosynthesis of gliotoxin, and gliotoxin is involved in mycoparasitism and biocontrol properties of this plant-beneficial fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079210-0
2014-10-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2319.html?itemId=/content/journal/micro/10.1099/mic.0.079210-0&mimeType=html&fmt=ahah

References

  1. Atanasova L., Le Crom S., Gruber S., Coulpier F., Seidl-Seiboth V., Kubicek C. P., Druzhinina I. S.. ( 2013;). Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. . BMC Genomics 14:, 121. [CrossRef][PubMed]
    [Google Scholar]
  2. Baek J. M., Kenerley C. M.. ( 1998;). The arg2 gene of Trichoderma virens: cloning and development of a homologous transformation system. . Fungal Genet Biol 23:, 34–44. [CrossRef][PubMed]
    [Google Scholar]
  3. Baek J. M., Howell C. R., Kenerley C. M.. ( 1999;). The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. . Curr Genet 35:, 41–50. [CrossRef][PubMed]
    [Google Scholar]
  4. Balibar C. J., Walsh C. T.. ( 2006;). GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. . Biochemistry 45:, 15029–15038. [CrossRef][PubMed]
    [Google Scholar]
  5. Bok J. W., Chung D. W., Balajee S. A., Marr K. A., Andes D., Nielsen K. F., Frisvad J. C., Kirby K. A., Keller N. P.. ( 2006;). GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. . Infect Immun 74:, 6761–6768. [CrossRef][PubMed]
    [Google Scholar]
  6. Boyer N., Morrison K. C., Kim J., Hergenrother P. J., Movassaghi M.. ( 2013;). Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids. . Chem Sci 4:, 1646–1657. [CrossRef][PubMed]
    [Google Scholar]
  7. Brian P. W.. ( 1944;). Production of gliotoxin by Trichoderma viride. . Nature 154:, 667–668. [CrossRef]
    [Google Scholar]
  8. Brian P. W., Hemming H. G.. ( 1945;). Gliotoxin, a fungistatic metabolic product of Trichoderma viride. . Ann Appl Biol 32:, 214–220. [CrossRef][PubMed]
    [Google Scholar]
  9. Burns J. R., Benson D. M.. ( 2000;). Biocontrol of damping-off of Catharanthus roseus caused by Pythium ultimum with Trichoderma virens and binucleate Rhizoctonia fungi. . Plant Dis 84:, 644–648. [CrossRef]
    [Google Scholar]
  10. Chang S. L., Chiang Y. M., Yeh H. H., Wu T. K., Wang C. C.. ( 2013;). Reconstitution of the early steps of gliotoxin biosynthesis in Aspergillus nidulans reveals the role of the monooxygenase GliC. . Bioorg Med Chem Lett 23:, 2155–2157. [CrossRef][PubMed]
    [Google Scholar]
  11. Choi H. S., Shim J. S., Kim J. A., Kang S. W., Kwon H. J.. ( 2007;). Discovery of gliotoxin as a new small molecule targeting thioredoxin redox system. . Biochem Biophys Res Commun 359:, 523–528. [CrossRef][PubMed]
    [Google Scholar]
  12. Cramer R. A. Jr, Gamcsik M. P., Brooking R. M., Najvar L. K., Kirkpatrick W. R., Patterson T. F., Balibar C. J., Graybill J. R., Perfect J. R.. & other authors ( 2006;). Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. . Eukaryot Cell 5:, 972–980. [CrossRef][PubMed]
    [Google Scholar]
  13. Davis C., Carberry S., Schrettl M., Singh I., Stephens J. C., Barry S. M., Kavanagh K., Challis G. L., Brougham D., Doyle S.. ( 2011;). The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus.. Chem Biol 18:, 542–552. [CrossRef][PubMed]
    [Google Scholar]
  14. Dhingra S., Andes D., Calvo A. M.. ( 2012;). VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. . Eukaryot Cell 11:, 1531–1543. [CrossRef][PubMed]
    [Google Scholar]
  15. Djonović S., Pozo M. J., Kenerley C. M.. ( 2006;). Tvbgn3, a β-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. . Appl Environ Microbiol 72:, 7661–7670. [CrossRef][PubMed]
    [Google Scholar]
  16. Djonović S., Vittone G., Mendoza-Herrera A., Kenerley C. M.. ( 2007;). Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6-glucanase genes. . Mol Plant Pathol 8:, 469–480. [CrossRef][PubMed]
    [Google Scholar]
  17. Druzhinina I. S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B. A., Kenerley C. M., Monte E., Mukherjee P. K., Zeilinger S., Grigoriev I. V., Kubicek C. P.. ( 2011;). Trichoderma: the genomics of opportunistic success. . Nat Rev Microbiol 9:, 749–759. [CrossRef][PubMed]
    [Google Scholar]
  18. Dubey S. C., Bhavani R., Singh B.. ( 2011;). Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani. . Pest Manag Sci 67:, 1163–1168.[PubMed]
    [Google Scholar]
  19. Dutcher J. D., Johnson J. R., Bruce W. F.. ( 1944;). Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. III. The structure of gliotoxin: degradation by hydriodic acid. . J Am Chem Soc 66:, 617–619. [CrossRef]
    [Google Scholar]
  20. Flygare J. A., Pillow T. H., Aristoff P.. ( 2013;). Antibody-drug conjugates for the treatment of cancer. . Chem Biol Drug Des 81:, 113–121. [CrossRef][PubMed]
    [Google Scholar]
  21. Gallagher L., Owens R. A., Dolan S. K., O’Keeffe G., Schrettl M., Kavanagh K., Jones G. W., Doyle S.. ( 2012;). The Aspergillus fumigatus protein GliK protects against oxidative stress and is essential for gliotoxin biosynthesis. . Eukaryot Cell 11:, 1226–1238. [CrossRef][PubMed]
    [Google Scholar]
  22. Gardiner D. M., Howlett B. J.. ( 2005;). Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. . FEMS Microbiol Lett 248:, 241–248. [CrossRef][PubMed]
    [Google Scholar]
  23. Gardiner D. M., Waring P., Howlett B. J.. ( 2005;). The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. . Microbiology 151:, 1021–1032. [CrossRef][PubMed]
    [Google Scholar]
  24. Glister G. A., Williams T. I.. ( 1944;). Production of gliotoxin by Aspergillus fumigatus mut. helvola Yuill. . Nature 153:, 651. [CrossRef]
    [Google Scholar]
  25. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M.. ( 2004;). Trichoderma species–opportunistic, avirulent plant symbionts. . Nat Rev Microbiol 2:, 43–56. [CrossRef][PubMed]
    [Google Scholar]
  26. Howell C. R.. ( 2003;). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. . Plant Dis 87:, 4–10. [CrossRef]
    [Google Scholar]
  27. Howell C. R., Puckhaber L. S.. ( 2005;). A study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. . Biol Control 33:, 217–222. [CrossRef]
    [Google Scholar]
  28. Howell C. R., Stipanovic R. D.. ( 1995;). Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. . Phytopathology 85:, 469–472. [CrossRef]
    [Google Scholar]
  29. Howell C. R., Stipanovic R. D., Lumsden R. D.. ( 1993;). Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. . Biocontrol Sci Technol 3:, 435–441. [CrossRef]
    [Google Scholar]
  30. Jackson J. C., Higgins L. A., Lin X.. ( 2009;). Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. . PLoS ONE 4:, e4224. [CrossRef][PubMed]
    [Google Scholar]
  31. Jain R., Valiante V., Remme N., Docimo T., Heinekamp T., Hertweck C., Gershenzon J., Haas H., Brakhage A. A.. ( 2011;). The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus. . Mol Microbiol 82:, 39–53. [CrossRef][PubMed]
    [Google Scholar]
  32. Johnson J. R., Bruce W. F., Dutcher J. D.. ( 1943;). Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. . J Am Chem Soc 65:, 2005–2009. [CrossRef]
    [Google Scholar]
  33. Jones R. W., Hancock J. G.. ( 1987;). Conversion of viridin to viridiol by viridin-producing fungi. . Can J Microbiol 33:, 963–966. [CrossRef][PubMed]
    [Google Scholar]
  34. Jones R. W., Hancock J. G.. ( 1988;). Mechanism of gliotoxin action and factors mediating gliotoxin sensitivity. . J Gen Microbiol 134:, 2067–2075.
    [Google Scholar]
  35. Kalb D., Lackner G., Hoffmeister D.. ( 2013;). Fungal peptide synthetases: an update on functions and specificity signatures. . Fungal Biol Rev 27:, 43–50. [CrossRef]
    [Google Scholar]
  36. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. . Genome Biol 12:, R40. [CrossRef][PubMed]
    [Google Scholar]
  37. Kupfahl C., Heinekamp T., Geginat G., Ruppert T., Härtl A., Hof H., Brakhage A. A.. ( 2006;). Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. . Mol Microbiol 62:, 292–302. [CrossRef][PubMed]
    [Google Scholar]
  38. Kuwayama H., Obara S., Morio T., Katoh M., Urushihara H., Tanaka Y.. ( 2002;). PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. . Nucleic Acids Res 30:, E2. [CrossRef][PubMed]
    [Google Scholar]
  39. Lewis J. A., Lumsden R. D.. ( 2001;). Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. . Crop Prot 20:, 49–56. [CrossRef]
    [Google Scholar]
  40. Lumsden R. D., Locke J. C.. ( 1989;). Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. . Phytopathology 79:, 361–366. [CrossRef]
    [Google Scholar]
  41. Lumsden R. D., Locke J. C., Adkins S. T., Walter J. F., Ridout C. J.. ( 1992;). Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. . Phytopathology 82:, 230–235. [CrossRef]
    [Google Scholar]
  42. Menzel A. E. O., Wintersteiner O., Hoogerheide J. C.. ( 1944;). The isolation of gliotoxin and fumigacin from culture filtrates of Aspergillus fumigatus. . J Biol Chem 152:, 419–429.
    [Google Scholar]
  43. Mukherjee P. K., Kenerley C. M.. ( 2010;). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. . Appl Environ Microbiol 76:, 2345–2352. [CrossRef][PubMed]
    [Google Scholar]
  44. Mukherjee P. K., Mukhopadhyay A. N., Sarmah D. K., Shrestha S. M.. ( 1995;). Comparative antagonistic properties of Gliocladium virens and Trichoderma harzianum on Sclerotium rolfsii and Rhizoctonia solani—its relevance to understanding the mechanisms of biocontrol. . J Phytopathol 143:, 275–279. [CrossRef]
    [Google Scholar]
  45. Mukherjee P. K., Horwitz B. A., Kenerley C. M.. ( 2012;). Secondary metabolism in Trichoderma–a genomic perspective. . Microbiology 158:, 35–45. [CrossRef][PubMed]
    [Google Scholar]
  46. Mukherjee P. K., Horwitz B. A., Herrera-Estrella A., Schmoll M., Kenerley C. M.. ( 2013;). Trichoderma research in the genome era. . Annu Rev Phytopathol 51:, 105–129. [CrossRef][PubMed]
    [Google Scholar]
  47. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B.. & other authors ( 2005;). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. . Nature 438:, 1151–1156. [CrossRef][PubMed]
    [Google Scholar]
  48. Park Y.-H., Kenerley C. M., Stack J. P.. ( 1992;). Inoculum dynamics of Gliocladium virens associated with roots of cotton seedlings. . Microb Ecol 23:, 169–179. [CrossRef][PubMed]
    [Google Scholar]
  49. Patron N. J., Waller R. F., Cozijnsen A. J., Straney D. C., Gardiner D. M., Nierman W. C., Howlett B. J.. ( 2007;). Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. . BMC Evol Biol 7:, 174. [CrossRef][PubMed]
    [Google Scholar]
  50. Perrin R. M., Fedorova N. D., Bok J. W., Cramer R. A. Jr, Wortman J. R., Kim H. S., Nierman W. C., Keller N. P.. ( 2007;). Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. . PLoS Pathog 3:, e50. [CrossRef][PubMed]
    [Google Scholar]
  51. Renwick J., Daly P., Reeves E. P., Kavanagh K.. ( 2006;). Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. . Mycopathologia 161:, 377–384. [CrossRef][PubMed]
    [Google Scholar]
  52. Röttig M., Medema M. H., Blin K., Weber T., Rausch C., Kohlbacher O.. ( 2011;). NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. . Nucleic Acids Res 39: (Web Server issue), W362–W367. [CrossRef][PubMed]
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  54. Scharf D. H., Remme N., Heinekamp T., Hortschansky P., Brakhage A. A., Hertweck C.. ( 2010;). Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus. . J Am Chem Soc 132:, 10136–10141. [CrossRef][PubMed]
    [Google Scholar]
  55. Scharf D. H., Remme N., Habel A., Chankhamjon P., Scherlach K., Heinekamp T., Hortschansky P., Brakhage A. A., Hertweck C.. ( 2011;). A dedicated glutathione S-transferase mediates carbon-sulfur bond formation in gliotoxin biosynthesis. . J Am Chem Soc 133:, 12322–12325. [CrossRef][PubMed]
    [Google Scholar]
  56. Scharf D. H., Chankhamjon P., Scherlach K., Heinekamp T., Roth M., Brakhage A. A., Hertweck C.. ( 2012a;). Epidithiol formation by an unprecedented twin carbon-sulfur lyase in the gliotoxin pathway. . Angew Chem Int Ed Engl 51:, 10064–10068. [CrossRef][PubMed]
    [Google Scholar]
  57. Scharf D. H., Heinekamp T., Remme N., Hortschansky P., Brakhage A. A., Hertweck C.. ( 2012b;). Biosynthesis and function of gliotoxin in Aspergillus fumigatus. . Appl Microbiol Biotechnol 93:, 467–472. [CrossRef][PubMed]
    [Google Scholar]
  58. Scharf D. H., Chankhamjon P., Scherlach K., Heinekamp T., Willing K., Brakhage A. A., Hertweck C.. ( 2013;). Epidithiodiketopiperazine biosynthesis: a four-enzyme cascade converts glutathione conjugates into transannular disulfide bridges. . Angew Chem Int Ed Engl 52:, 11092–11095. [CrossRef][PubMed]
    [Google Scholar]
  59. Schrettl M., Carberry S., Kavanagh K., Haas H., Jones G. W., O’Brien J., Nolan A., Stephens J., Fenelon O., Doyle S.. ( 2010;). Self-protection against gliotoxin–a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. . PLoS Pathog 6:, e1000952. [CrossRef][PubMed]
    [Google Scholar]
  60. Stachelhaus T., Mootz H. D., Marahiel M. A.. ( 1999;). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. . Chem Biol 6:, 493–505. [CrossRef][PubMed]
    [Google Scholar]
  61. Sugui J. A., Pardo J., Chang Y. C., Zarember K. A., Nardone G., Galvez E. M., Müllbacher A., Gallin J. I., Simon M. M., Kwon-Chung K. J.. ( 2007;). Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. . Eukaryot Cell 6:, 1562–1569. [CrossRef][PubMed]
    [Google Scholar]
  62. Teicher B. A., Doroshow J. H.. ( 2012;). The promise of antibody-drug conjugates. . N Engl J Med 367:, 1847–1848. [CrossRef][PubMed]
    [Google Scholar]
  63. Vargas W. A., Mandawe J. C., Kenerley C. M.. ( 2009;). Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. . Plant Physiol 151:, 792–808. [CrossRef][PubMed]
    [Google Scholar]
  64. Waring P., Beaver J.. ( 1996;). Gliotoxin and related epipolythiodioxopiperazines. . Gen Pharmacol 27:, 1311–1316. [CrossRef][PubMed]
    [Google Scholar]
  65. Weaver M., Kenerley C. M.. ( 2005;). Density independent population dynamics by Trichoderma virens in soil and defined substrates. . Biocontrol Sci Technol 15:, 847–857. [CrossRef]
    [Google Scholar]
  66. Weindling R.. ( 1934;). Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. . Phytopathology 24:, 1153–1179.
    [Google Scholar]
  67. Weindling R.. ( 1941;). Experimental consideration of the mold toxins of Gliocladium and Trichoderma. . Phytopathology 31:, 991–1003.
    [Google Scholar]
  68. Weindling R., Emerson O. H.. ( 1936;). The isolation of a toxic substance from the culture filtrate of Trichoderma. . Phytopathology 26:, 1068–1070.
    [Google Scholar]
  69. Wilhite S. E., Straney D. C.. ( 1996;). Timing of gliotoxin biosynthesis in the fungal biological control agent Gliocladium virens (Trichoderma virens). . Appl Microbiol Biotechnol 45:, 513–518.
    [Google Scholar]
  70. Wilhite S. E., Lumsden R. D., Straney D. C.. ( 1994;). Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. . Phytopathology 84:, 816–821. [CrossRef]
    [Google Scholar]
  71. Wright J. M.. ( 1952;). Production of gliotoxin in unsterilized soil. . Nature 170:, 673–674. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079210-0
Loading
/content/journal/micro/10.1099/mic.0.079210-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error