1887

Abstract

Heat-shock proteins are molecular chaperones essential for protein folding, degradation and trafficking. The human pathogen encodes a copy of the operon in both chromosomes and these genes share <80 % similarity with each other. Comparative genomic analysis was used to determine whether this duplication is prevalent among specifically or in general. Among the complete genome sequences in the database (31 species), seven species contained a copy of in each chromosome, including the human pathogens , and . Phylogenetic analysis of GroEL among the indicated that GroESEL-1 encoded in chromosome I was the ancestral copy and GroESEL-2 in chromosome II arose by an ancient gene duplication event. Interestingly, outside of the within the , chromosomal duplications were rare among the 296 genomes examined; only five additional species contained two or more copies. Examination of the expression pattern of from cells grown under different conditions revealed differential expression between the copies. The data demonstrate that was more highly expressed during growth in exponential phase than and a similar pattern was also found in both and . Overall these data suggest that retention of both copies of in species may confer an evolutionary advantage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079194-0
2014-09-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1953.html?itemId=/content/journal/micro/10.1099/mic.0.079194-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Amaro C., Biosca E. G.. ( 1996;). Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. . Appl Environ Microbiol 62:, 1454–1457.[PubMed]
    [Google Scholar]
  3. Azem A., Diamant S., Goloubinoff P.. ( 1994a;). Effect of divalent cations on the molecular structure of the GroEL oligomer. . Biochemistry 33:, 6671–6675. [CrossRef][PubMed]
    [Google Scholar]
  4. Azem A., Kessel M., Goloubinoff P.. ( 1994b;). Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. . Science 265:, 653–656. [CrossRef][PubMed]
    [Google Scholar]
  5. Bisharat N., Cohen D. I., Harding R. M., Falush D., Crook D. W., Peto T., Maiden M. C.. ( 2005;). Hybrid Vibrio vulnificus. . Emerg Infect Dis 11:, 30–35. [CrossRef][PubMed]
    [Google Scholar]
  6. Bittner A. N., Foltz A., Oke V.. ( 2007;). Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. . J Bacteriol 189:, 1884–1889. [CrossRef][PubMed]
    [Google Scholar]
  7. Blackwell K. D., Oliver J. D.. ( 2008;). The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries. . J Microbiol 46:, 146–153. [CrossRef][PubMed]
    [Google Scholar]
  8. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B.. ( 1994;). The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. . Nature 371:, 578–586. [CrossRef][PubMed]
    [Google Scholar]
  9. Brunham R. C., Peeling R. W.. ( 1994;). Chlamydia trachomatis antigens: role in immunity and pathogenesis. . Infect Agents Dis 3:, 218–233.[PubMed]
    [Google Scholar]
  10. Chen C. Y., Wu K. M., Chang Y. C., Chang C. H., Tsai H. C., Liao T. L., Liu Y. M., Chen H. J., Shen A. B.. & other authors ( 2003;). Comparative genome analysis of Vibrio vulnificus, a marine pathogen. . Genome Res 13:, 2577–2587. [CrossRef][PubMed]
    [Google Scholar]
  11. Chowdhury N., Norris J., McAlister E., Lau S. Y., Thomas G. H., Boyd E. F.. ( 2012;). The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. . Microbiology 158:, 2158–2167. [CrossRef][PubMed]
    [Google Scholar]
  12. Clark G. W., Tillier E. R.. ( 2010;). Loss and gain of GroEL in the Mollicutes. . Biochem Cell Biol 88:, 185–194. [CrossRef][PubMed]
    [Google Scholar]
  13. Cohen A. L., Oliver J. D., DePaola A., Feil E. J., Boyd E. F.. ( 2007;). Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island. . Appl Environ Microbiol 73:, 5553–5565. [CrossRef][PubMed]
    [Google Scholar]
  14. Ellis R. J.. ( 1993;). The general concept of molecular chaperones. . Philos Trans R Soc Lond B Biol Sci 339:, 257–261. [CrossRef][PubMed]
    [Google Scholar]
  15. Fayet O., Ziegelhoffer T., Georgopoulos C.. ( 1989;). The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. . J Bacteriol 171:, 1379–1385.[PubMed]
    [Google Scholar]
  16. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  17. Fouz B., Llorens A., Valiente E., Amaro C.. ( 2010;). A comparative epizootiologic study of the two fish-pathogenic serovars of Vibrio vulnificus biotype 2. . J Fish Dis 33:, 383–390. [CrossRef][PubMed]
    [Google Scholar]
  18. Garduño R. A., Chong A., Nasrallah G. K., Allan D. S.. ( 2011;). The Legionella pneumophila chaperonin - an unusual multifunctional protein in unusual locations. . Front Microbiol 2:, 122. [CrossRef][PubMed]
    [Google Scholar]
  19. George R., Kelly S. M., Price N. C., Erbse A., Fisher M., Lund P. A.. ( 2004;). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. . Biochem Biophys Res Commun 324:, 822–828. [CrossRef][PubMed]
    [Google Scholar]
  20. Goloubinoff P., Diamant S., Weiss C., Azem A.. ( 1997;). GroES binding regulates GroEL chaperonin activity under heat shock. . FEBS Lett 407:, 215–219. [CrossRef][PubMed]
    [Google Scholar]
  21. Gould P., Maguire M., Lund P. A.. ( 2007a;). Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. . Arch Microbiol 187:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  22. Gould P. S., Burgar H. R., Lund P. A.. ( 2007b;). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. . Cell Stress Chaperones 12:, 123–131. [CrossRef][PubMed]
    [Google Scholar]
  23. Goyal K., Qamra R., Mande S. C.. ( 2006;). Multiple gene duplication and rapid evolution in the groEL gene: functional implications. . J Mol Evol 63:, 781–787. [CrossRef][PubMed]
    [Google Scholar]
  24. Gulig P. A., Bourdage K. L., Starks A. M.. ( 2005;). Molecular pathogenesis of Vibrio vulnificus. . J Microbiol 43: (Spec No), 118–131.[PubMed]
    [Google Scholar]
  25. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D.. & other authors ( 2000;). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. . Nature 406:, 477–483. [CrossRef][PubMed]
    [Google Scholar]
  26. Henderson B., Lund P. A., Coates A. R.. ( 2010;). Multiple moonlighting functions of mycobacterial molecular chaperones. . Tuberculosis (Edinb) 90:, 119–124. [CrossRef][PubMed]
    [Google Scholar]
  27. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M.. ( 2004;). cpnDB: a chaperonin sequence database. . Genome Res 14:, 1669–1675. [CrossRef][PubMed]
    [Google Scholar]
  28. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. ( 1989;). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. . Gene 77:, 61–68. [CrossRef][PubMed]
    [Google Scholar]
  29. Hu Y., Henderson B., Lund P. A., Tormay P., Ahmed M. T., Gurcha S. S., Besra G. S., Coates A. R.. ( 2008;). A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. . Infect Immun 76:, 1535–1546. [CrossRef][PubMed]
    [Google Scholar]
  30. Hughes A. L.. ( 1993;). Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. . Mol Biol Evol 10:, 1343–1359.[PubMed]
    [Google Scholar]
  31. Ivic A., Olden D., Wallington E. J., Lund P. A.. ( 1997;). Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37°C but not at 43°C. . Gene 194:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  32. Jones M. K., Oliver J. D.. ( 2009;). Vibrio vulnificus: disease and pathogenesis. . Infect Immun 77:, 1723–1733. [CrossRef][PubMed]
    [Google Scholar]
  33. Kalburge S. S., Whitaker W. B., Boyd E. F.. ( 2014;). High-salt preadaptation of Vibrio parahaemolyticus enhances survival in response to lethal environmental stresses. . J Food Prot 77:, 246–253. [CrossRef][PubMed]
    [Google Scholar]
  34. Karunakaran K. P., Noguchi Y., Read T. D., Cherkasov A., Kwee J., Shen C., Nelson C. C., Brunham R. C.. ( 2003;). Molecular analysis of the multiple GroEL proteins of Chlamydiae. . J Bacteriol 185:, 1958–1966. [CrossRef][PubMed]
    [Google Scholar]
  35. Kerner M. J., Naylor D. J., Ishihama Y., Maier T., Chang H.-C., Stines A. P., Georgopoulos C., Frishman D., Hayer-Hartl M.. & other authors ( 2005;). Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. . Cell 122:, 209–220. [CrossRef][PubMed]
    [Google Scholar]
  36. Lichtenwalner A. B., Patton D. L., Van Voorhis W. C., Sweeney Y. T., Kuo C. C.. ( 2004;). Heat shock protein 60 is the major antigen which stimulates delayed-type hypersensitivity reaction in the macaque model of Chlamydia trachomatis salpingitis. . Infect Immun 72:, 1159–1161. [CrossRef][PubMed]
    [Google Scholar]
  37. Lubin J. B., Kingston J. J., Chowdhury N., Boyd E. F.. ( 2012;). Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. . Appl Environ Microbiol 78:, 3407–3415. [CrossRef][PubMed]
    [Google Scholar]
  38. Lund P. A.. ( 2009;). Multiple chaperonins in bacteria–why so many?. FEMS Microbiol Rev 33:, 785–800. [CrossRef][PubMed]
    [Google Scholar]
  39. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M.. ( 2001;). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174. [CrossRef][PubMed]
    [Google Scholar]
  40. Makino K., Oshima K., Kurokawa K., Yokoyama K., Uda T., Tagomori K., Iijima Y., Najima M., Nakano M.. & other authors ( 2003;). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. . Lancet 361:, 743–749. [CrossRef][PubMed]
    [Google Scholar]
  41. McNally D., Fares M. A.. ( 2007;). In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. . BMC Evol Biol 7:, 81. [CrossRef][PubMed]
    [Google Scholar]
  42. Nei M., Gojobori T.. ( 1986;). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. . Mol Biol Evol 3:, 418–426.[PubMed]
    [Google Scholar]
  43. Nei M., Jin L.. ( 1989;). Variances of the average numbers of nucleotide substitutions within and between populations. . Mol Biol Evol 6:, 290–300.[PubMed]
    [Google Scholar]
  44. Oliver J. D., Warner R. A., Cleland D. R.. ( 1982;). Distribution and ecology of Vibrio vulnificus and other lactose-fermenting marine vibrios in coastal waters of the southeastern United States. . Appl Environ Microbiol 44:, 1404–1414.[PubMed]
    [Google Scholar]
  45. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef][PubMed]
    [Google Scholar]
  46. Philippe N., Alcaraz J. P., Coursange E., Geiselmann J., Schneider D.. ( 2004;). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. . Plasmid 51:, 246–255. [CrossRef][PubMed]
    [Google Scholar]
  47. Quirke A. M., Reen F. J., Claesson M. J., Boyd E. F.. ( 2006;). Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. . Bioinformatics 22:, 905–910. [CrossRef][PubMed]
    [Google Scholar]
  48. Rao T., Lund P. A.. ( 2010;). Differential expression of the multiple chaperonins of Mycobacterium smegmatis. . FEMS Microbiol Lett 310:, 24–31. [CrossRef][PubMed]
    [Google Scholar]
  49. Rinke de Wit T. F., Bekelie S., Osland A., Miko T. L., Hermans P. W., van Soolingen D., Drijfhout J. W., Schöningh R., Janson A. A., Thole J. E.. ( 1992;). Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. . Mol Microbiol 6:, 1995–2007. [CrossRef][PubMed]
    [Google Scholar]
  50. Rodríguez-Quiñones F., Maguire M., Wallington E. J., Gould P. S., Yerko V., Downie J. A., Lund P. A.. ( 2005;). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. . Arch Microbiol 183:, 253–265. [CrossRef][PubMed]
    [Google Scholar]
  51. Rutherford S. L.. ( 2003;). Between genotype and phenotype: protein chaperones and evolvability. . Nat Rev Genet 4:, 263–274. [CrossRef][PubMed]
    [Google Scholar]
  52. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  53. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  54. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  55. Wang Y., Zhang W. Y., Zhang Z., Li J., Li Z. F., Tan Z. G., Zhang T. T., Wu Z. H., Liu H., Li Y. Z.. ( 2013;). Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. . PLoS Genet 9:, e1003306. [CrossRef][PubMed]
    [Google Scholar]
  56. Wang Y., Li X., Zhang W., Zhou X., Li Y. Z.. ( 2014;). The groEL2 gene, but not groEL1, is required for biosynthesis of the secondary metabolite myxovirescin in Myxococcus xanthus DK1622. . Microbiology 160:, 488–495. [CrossRef][PubMed]
    [Google Scholar]
  57. Warner E., Oliver J. D.. ( 2008;). Population structures of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater. . Appl Environ Microbiol 74:, 80–85. [CrossRef][PubMed]
    [Google Scholar]
  58. Whitaker W. B., Richards G. P., Boyd E. F.. ( 2014;). Loss of sigma factor RpoN increases intestinal colonization of Vibrio parahaemolyticus in an adult mouse model. . Infect Immun 82:, 544–556. [CrossRef][PubMed]
    [Google Scholar]
  59. Williams T. A., Codoñer F. M., Toft C., Fares M. A.. ( 2010;). Two chaperonin systems in bacterial genomes with distinct ecological roles. . Trends Genet 26:, 47–51. [CrossRef][PubMed]
    [Google Scholar]
  60. Wright A. C., Hill R. T., Johnson J. A., Roghman M. C., Colwell R. R., Morris J. G. Jr. ( 1996;). Distribution of Vibrio vulnificus in the Chesapeake Bay. . Appl Environ Microbiol 62:, 717–724.[PubMed]
    [Google Scholar]
  61. Wuppermann F. N., Mölleken K., Julien M., Jantos C. A., Hegemann J. H.. ( 2008;). Chlamydia pneumoniae GroEL1 protein is cell surface associated and required for infection of HEp-2 cells. . J Bacteriol 190:, 3757–3767. [CrossRef][PubMed]
    [Google Scholar]
  62. Zügel U., Kaufmann S. H.. ( 1999;). Role of heat shock proteins in protection from and pathogenesis of infectious diseases. . Clin Microbiol Rev 12:, 19–39.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079194-0
Loading
/content/journal/micro/10.1099/mic.0.079194-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error