1887

Abstract

MsRbpA is an RNA polymerase (RNAP) binding protein from . According to previous studies, MsRbpA rescues rifampicin-induced transcription inhibition upon binding to the RNAP. Others have shown that RbpA from (MtbRbpA) is a transcription activator. In this study, we report that both MsRbpA and MtbRbpA activate transcription as well as rescue rifampicin-induced transcription inhibition. Transcription activation is achieved through the increased formation of closed RNAP–promoter complex as well as enhanced rate of conversion of this complex to a stable transcriptionally competent RNAP–promoter complex. When a 16 aa peptide fragment (Asp 58 to Lys 73) was deleted from MsRbpA, the resulting protein showed 1000-fold reduced binding with core RNAP. The deletion results in abolition of transcription activation and rescue of transcription from the inhibitory effect of rifampicin. Through alanine scanning of this essential region of MsRbpA, Gly 67, Val 69, Pro 70 and Pro 72 residues are identified to be important for MsRbpA function. Furthermore, we report here that the protein is indispensable for , and it appears to help the organism grow in the presence of the antibiotic rifampicin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079186-0
2014-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/2018.html?itemId=/content/journal/micro/10.1099/mic.0.079186-0&mimeType=html&fmt=ahah

References

  1. Artsimovitch I. , Vassylyeva M. N. , Svetlov D. , Svetlov V. , Perederina A. , Igarashi N. , Matsugaki N. , Wakatsuki S. , Tahirov T. H. , Vassylyev D. G. . ( 2005; ). Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. . Cell 122:, 351–363. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barry C. E. . ( 2014; ). Tuberculosis: drug discovery goes au naturel. . Nature 506:, 436–437. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boldrin F. , Casonato S. , Dainese E. , Sala C. , Dhar N. , Palù G. , Riccardi G. , Cole S. T. , Manganelli R. . ( 2010; ). Development of a repressible mycobacterial promoter system based on two transcriptional repressors. . Nucleic Acids Res 38:, e134. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bortoluzzi A. , Muskett F. W. , Waters L. C. , Addis P. W. , Rieck B. , Munder T. , Schleier S. , Forti F. , Ghisotti D. . & other authors ( 2013; ). Mycobacterium tuberculosis RNA polymerase-binding protein A (RbpA) and its interactions with sigma factors. . J Biol Chem 288:, 14438–14450. [CrossRef] [PubMed]
    [Google Scholar]
  5. Borukhov S. , Nudler E. . ( 2008; ). RNA polymerase: the vehicle of transcription. . Trends Microbiol 16:, 126–134. [CrossRef] [PubMed]
    [Google Scholar]
  6. Browning D. F. , Busby S. J. . ( 2004; ). The regulation of bacterial transcription initiation. . Nat Rev Microbiol 2:, 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brunner M. , Bujard H. . ( 1987; ). Promoter recognition and promoter strength in the Escherichia coli system. . EMBO J 6:, 3139–3144.[PubMed]
    [Google Scholar]
  8. Buc H. , McClure W. R. . ( 1985; ). Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps. . Biochemistry 24:, 2712–2723. [CrossRef] [PubMed]
    [Google Scholar]
  9. Burgess R. R. . ( 1969; ). Separation and characterization of the subunits of ribonucleic acid polymerase. . J Biol Chem 244:, 6168–6176.[PubMed]
    [Google Scholar]
  10. Campbell E. A. , Korzheva N. , Mustaev A. , Murakami K. , Nair S. , Goldfarb A. , Darst S. A. . ( 2001; ). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. . Cell 104:, 901–912. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chamberlin M. , Berg P. . ( 1962; ). Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli . . Proc Natl Acad Sci U S A 48:, 81–94. [CrossRef] [PubMed]
    [Google Scholar]
  12. China A. , Nagaraja V. . ( 2010; ). Purification of RNA polymerase from mycobacteria for optimized promoter–polymerase interactions. . Protein Expr Purif 69:, 235–242. [CrossRef] [PubMed]
    [Google Scholar]
  13. China A. , Tare P. , Nagaraja V. . ( 2010; ). Comparison of promoter-specific events during transcription initiation in mycobacteria. . Microbiology 156:, 1942–1952. [CrossRef] [PubMed]
    [Google Scholar]
  14. Crubézy E. , Ludes B. , Poveda J. D. , Clayton J. , Crouau-Roy B. , Montagnon D. . ( 1998; ). Identification of Mycobacterium DNA in an Egyptian Pott’s disease of 5,400 years old. . C R Acad Sci III 321:, 941–951.[PubMed] [CrossRef]
    [Google Scholar]
  15. Darst S. A. . ( 2001; ). Bacterial RNA polymerase. . Curr Opin Struct Biol 11:, 155–162. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dey A. , Verma A. K. , Chatterji D. . ( 2010; ). Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. . Microbiology 156:, 873–883. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dey A. , Verma A. K. , Chatterji D. . ( 2011; ). Molecular insights into the mechanism of phenotypic tolerance to rifampicin conferred on mycobacterial RNA polymerase by MsRbpA. . Microbiology 157:, 2056–2071. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dey A. , Adithi V. R. , Chatterji D. . ( 2012; ). Co-evolution of RNA polymerase with RbpA in the phylum Actinobacteria. . Appl Transl Genom 1:, 9–20. [CrossRef]
    [Google Scholar]
  19. Feklistov A. , Mekler V. , Jiang Q. , Westblade L. F. , Irschik H. , Jansen R. , Mustaev A. , Darst S. A. , Ebright R. H. . ( 2008; ). Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center. . Proc Natl Acad Sci U S A 105:, 14820–14825. [CrossRef] [PubMed]
    [Google Scholar]
  20. Flåtten I. , Morigen , Skarstad K. . ( 2009; ). DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. . Mol Microbiol 71:, 1018–1030. [CrossRef] [PubMed]
    [Google Scholar]
  21. Floss H. G. , Yu T. W. . ( 2005; ). Rifamycin – mode of action, resistance, and biosynthesis. . Chem Rev 105:, 621–632. [CrossRef] [PubMed]
    [Google Scholar]
  22. Forti F. , Mauri V. , Dehò G. , Ghisotti D. . ( 2011; ). Isolation of conditional expression mutants in Mycobacterium tuberculosis by transposon mutagenesis. . Tuberculosis (Edinb) 91:, 569–578. [CrossRef] [PubMed]
    [Google Scholar]
  23. Gentry D. R. , Burgess R. R. . ( 1990; ). Overproduction and purification of the ωsubunit of Escherichia coli RNA polymerase. . Protein Expr Purif 1:, 81–86. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gross C. A. , Lonetto M. , Losick R. . ( 1992; ). Bacterial sigma factors. . In Transcriptional Regulation, vol. 1, pp. 129–176. Edited by McKnight S. L. , Yamamoto K. R. . . Cold Spring Harbor:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  25. Gruber T. M. , Gross C. A. . ( 2003; ). Multiple sigma subunits and the partitioning of bacterial transcription space. . Annu Rev Microbiol 57:, 441–466. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hartmann G. , Honikel K. O. , Knüsel F. , Nüesch J. . ( 1967; ). The specific inhibition of the DNA-directed RNA synthesis by rifamycin. . Biochim Biophys Acta 145:, 843–844. [CrossRef] [PubMed]
    [Google Scholar]
  27. Haugen S. P. , Ross W. , Gourse R. L. . ( 2008; ). Advances in bacterial promoter recognition and its control by factors that do not bind DNA. . Nat Rev Microbiol 6:, 507–519. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hinkle D. C. , Mangel W. F. , Chamberlin M. J. . ( 1972; ). Studies of the binding of Escherichia coli RNA polymerase to DNA. IV. The effect of rifampicin on binding and on RNA chain initiation. . J Mol Biol 70:, 209–220. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hu Y. , Morichaud Z. , Chen S. , Leonetti J. P. , Brodolin K. . ( 2012; ). Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σA-containing RNA polymerase holoenzyme. . Nucleic Acids Res 40:, 6547–6557. [CrossRef] [PubMed]
    [Google Scholar]
  30. Jia Y. , Patel S. S. . ( 1997; ). Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase. . Biochemistry 36:, 4223–4232. [CrossRef] [PubMed]
    [Google Scholar]
  31. Jin D. J. , Gross C. A. . ( 1988; ). Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. . J Mol Biol 202:, 45–58. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kontur W. S. , Capp M. W. , Gries T. J. , Saecker R. M. , Record M. T. Jr . ( 2010; ). Probing DNA binding, DNA opening, and assembly of a downstream clamp/jaw in Escherichia coli RNA polymerase–λPR promoter complexes using salt and the physiological anion glutamate. . Biochemistry 49:, 4361–4373. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lee R. E. , Hurdle J. G. , Liu J. , Bruhn D. F. , Matt T. , Scherman M. S. , Vaddady P. K. , Zheng Z. , Qi J. . & other authors ( 2014; ). Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. . Nat Med 20:, 152–158. [CrossRef] [PubMed]
    [Google Scholar]
  34. Losick R. , Chamberlin M. . ( 1977; ). RNA Polymerase. Cold Spring Harbor:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  35. Lutz R. , Lozinski T. , Ellinger T. , Bujard H. . ( 2001; ). Dissecting the functional program of Escherichia coli promoters: the combined mode of action of Lac repressor and AraC activator. . Nucleic Acids Res 29:, 3873–3881. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mathew R. , Chatterji D. . ( 2006; ). The evolving story of the omega subunit of bacterial RNA polymerase. . Trends Microbiol 14:, 450–455. [CrossRef] [PubMed]
    [Google Scholar]
  37. McClure W. R. . ( 1985; ). Mechanism and control of transcription initiation in prokaryotes. . Annu Rev Biochem 54:, 171–204. [CrossRef] [PubMed]
    [Google Scholar]
  38. McClure W. R. , Cech C. L. . ( 1978; ). On the mechanism of rifampicin inhibition of RNA synthesis. . J Biol Chem 253:, 8949–8956.[PubMed]
    [Google Scholar]
  39. Miller L. P. , Crawford J. T. , Shinnick T. M. . ( 1994; ). The rpoB gene of Mycobacterium tuberculosis . . Antimicrob Agents Chemother 38:, 805–811. [CrossRef] [PubMed]
    [Google Scholar]
  40. Mukherjee R. , Chatterji D. . ( 2008; ). Stationary phase induced alterations in mycobacterial RNA polymerase assembly: a cue to its phenotypic resistance towards rifampicin. . Biochem Biophys Res Commun 369:, 899–904. [CrossRef] [PubMed]
    [Google Scholar]
  41. Murakami K. S. . ( 2013; ). X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. . J Biol Chem 288:, 9126–9134. [CrossRef] [PubMed]
    [Google Scholar]
  42. Newell K. V. , Thomas D. P. , Brekasis D. , Paget M. S. . ( 2006; ). The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor . . Mol Microbiol 60:, 687–696. [CrossRef] [PubMed]
    [Google Scholar]
  43. Nudler E. . ( 2009; ). RNA polymerase active center: the molecular engine of transcription. . Annu Rev Biochem 78:, 335–361. [CrossRef] [PubMed]
    [Google Scholar]
  44. Paget M. S. , Molle V. , Cohen G. , Aharonowitz Y. , Buttner M. J. . ( 2001; ). Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the σR regulon. . Mol Microbiol 42:, 1007–1020. [CrossRef] [PubMed]
    [Google Scholar]
  45. Ross W. , Vrentas C. E. , Sanchez-Vazquez P. , Gaal T. , Gourse R. L. . ( 2013; ). The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. . Mol Cell 50:, 420–429. [CrossRef] [PubMed]
    [Google Scholar]
  46. Saecker R. M. , Record M. T. Jr , Dehaseth P. L. . ( 2011; ). Mechanism of bacterial transcription initiation: RNA polymerase – promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. . J Mol Biol 412:, 754–771. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sensi P. . ( 1983; ). History of the development of rifampin. . Rev Infect Dis 5: (Suppl 3), S402–S406. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sensi P. , Greco A. M. , Ballotta R. . ( 1959–1960; ). Rifomycin. I. Isolation and properties of rifomycin B and rifomycin complex. . Antibiot Annu 7:, 262–270.[PubMed]
    [Google Scholar]
  49. Sensi P. , Margalith P. , Timbal M. T. . ( 1959; ). Rifomycin, a new antibiotic; preliminary report. . Farmaco, Sci 14:, 146–147.[PubMed]
    [Google Scholar]
  50. Stadthagen-Gomez G. , Helguera-Repetto A. C. , Cerna-Cortes J. F. , Goldstein R. A. , Cox R. A. , Gonzalez-y-Merchand J. A. . ( 2008; ). The organization of two rRNA (rrn) operons of the slow-growing pathogen Mycobacterium celatum provides key insights into mycobacterial evolution. . FEMS Microbiol Lett 280:, 102–112. [CrossRef] [PubMed]
    [Google Scholar]
  51. Tabib-Salazar A. , Liu B. , Doughty P. , Lewis R. A. , Ghosh S. , Parsy M. L. , Simpson P. J. , O’Dwyer K. , Matthews S. J. , Paget M. S. . ( 2013; ). The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase. . Nucleic Acids Res 41:, 5679–5691. [CrossRef] [PubMed]
    [Google Scholar]
  52. Travers A. A. , Burgess R. R. . ( 1969; ). Cyclic re-use of the RNA polymerase sigma factor. . Nature 222:, 537–540. [CrossRef] [PubMed]
    [Google Scholar]
  53. Tsujikawa L. , Tsodikov O. V. , deHaseth P. L. . ( 2002; ). Interaction of RNA polymerase with forked DNA: evidence for two kinetically significant intermediates on the pathway to the final complex. . Proc Natl Acad Sci U S A 99:, 3493–3498. [CrossRef] [PubMed]
    [Google Scholar]
  54. Tupin A. , Gualtieri M. , Roquet-Banères F. , Morichaud Z. , Brodolin K. , Leonetti J.-P. . ( 2010; ). Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. . Int J Antimicrob Agents 35:, 519–523. [CrossRef] [PubMed]
    [Google Scholar]
  55. Vassylyev D. G. , Sekine S. , Laptenko O. , Lee J. , Vassylyeva M. N. , Borukhov S. , Yokoyama S. . ( 2002; ). Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. . Nature 417:, 712–719. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wegrzyn A. , Szalewska-Pałasz A. , Błaszczak A. , Liberek K. , Wegrzyn G. . ( 1998; ). Differential inhibition of transcription from σ70- and σ32-dependent promoters by rifampicin. . FEBS Lett 440:, 172–174. [CrossRef] [PubMed]
    [Google Scholar]
  57. Weiss L. A. , Harrison P. G. , Nickels B. E. , Glickman M. S. , Campbell E. A. , Darst S. A. , Stallings C. L. . ( 2012; ). Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis. . J Bacteriol 194:, 5621–5631. [CrossRef] [PubMed]
    [Google Scholar]
  58. WHO ( 2012; ). Global Tuberculosis Report. Geneva:: WHO;.
    [Google Scholar]
  59. Wirth T. , Hildebrand F. , Allix-Béguec C. , Wölbeling F. , Kubica T. , Kremer K. , van Soolingen D. , Rüsch-Gerdes S. , Locht C. . & other authors ( 2008; ). Origin, spread and demography of the Mycobacterium tuberculosis complex. . PLoS Pathog 4:, e1000160. [CrossRef] [PubMed]
    [Google Scholar]
  60. Zhang G. , Campbell E. A. , Minakhin L. , Richter C. , Severinov K. , Darst S. A. . ( 1999; ). Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. . Cell 98:, 811–824. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079186-0
Loading
/content/journal/micro/10.1099/mic.0.079186-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error