1887

Abstract

Copper is an important element in host–microbe interactions, acting both as a catalyst in enzymes and as a potential toxin. Cu-ATPases drive cytoplasmic Cu efflux and protect bacteria against metal overload. Many pathogenic and symbiotic bacteria contain multiple Cu-ATPase genes within particular genetic environments, suggesting alternative roles for each resulting protein. This hypothesis was tested by characterizing five homologous Cu-ATPases present in the symbiotic organism . Mutation of each gene led to different phenotypes and abnormal nodule development in the alfalfa host. Distinct responses were detected in free-living mutant strains exposed to metal and redox stresses. Differential gene expression was detected under Cu, oxygen or nitrosative stress. These observations suggest that CopA1a maintains the cytoplasmic Cu quota and its expression is controlled by Cu levels. CopA1b is also regulated by Cu concentrations and is required during symbiosis for bacteroid maturation. CopA2-like proteins, FixI1 and FixI2, are necessary for the assembly of two different cytochrome oxidases at different stages of bacterial life. CopA3 is a phylogenetically distinct Cu-ATPase that does not contribute to Cu tolerance. It is regulated by redox stress and required during symbiosis. We postulated a model where non-redundant homologous Cu-ATPases, operating under distinct regulation, transport Cu to different target proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079137-0
2014-06-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1237.html?itemId=/content/journal/micro/10.1099/mic.0.079137-0&mimeType=html&fmt=ahah

References

  1. Argüello J. M.. ( 2003;). Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol195:93–108 [CrossRef][PubMed]
    [Google Scholar]
  2. Argüello J. M., Eren E., González-Guerrero M.. ( 2007;). The structure and function of heavy metal transport P1B-ATPases. Biometals20:233–248 [CrossRef][PubMed]
    [Google Scholar]
  3. Argüello J. M., González-Guerrero M., Raimunda D.. ( 2011;). Bacterial transition metal P1B-ATPases: transport mechanism and roles in virulence. Biochemistry50:9940–9949 [CrossRef][PubMed]
    [Google Scholar]
  4. Argüello J. M., Raimunda D., Padilla-Benavides T.. ( 2013;). Mechanism of copper homeostasis in bacteria. Front Cell Infect Microbiol3:1–14 [CrossRef][PubMed]
    [Google Scholar]
  5. Banba M., Siddique A. B., Kouchi H., Izui K., Hata S.. ( 2001;). Lotus japonicus forms early senescent root nodules with Rhizobium etli . Mol Plant Microbe Interact14:173–180 [CrossRef][PubMed]
    [Google Scholar]
  6. Bardin S., Dan S., Osteras M., Finan T. M.. ( 1996;). A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti . J Bacteriol178:4540–4547[PubMed]
    [Google Scholar]
  7. Batut J., Daveran-Mingot M. L., David M., Jacobs J., Garnerone A. M., Kahn D.. ( 1989;). fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti . EMBO J8:1279–1286[PubMed]
    [Google Scholar]
  8. Beringer J. E.. ( 1974;). R factor transfer in Rhizobium leguminosarum . J Gen Microbiol84:188–198 [CrossRef][PubMed]
    [Google Scholar]
  9. Bittner A. N., Oke V.. ( 2006;). Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti . J Bacteriol188:3507–3515 [CrossRef][PubMed]
    [Google Scholar]
  10. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  11. Capela D., Carrere S., Batut J.. ( 2005;). Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon. Appl Environ Microbiol71:4910–4913 [CrossRef][PubMed]
    [Google Scholar]
  12. Delledonne M., Polverari A., Murgia I.. ( 2003;). The functions of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response. Antioxid Redox Signal5:33–41 [CrossRef][PubMed]
    [Google Scholar]
  13. Dupont C. L., Grass G., Rensing C.. ( 2011;). Copper toxicity and the origin of bacterial resistance – new insights and applications. Metallomics3:1109–1118 [CrossRef][PubMed]
    [Google Scholar]
  14. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  15. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorhölter F. J., Hernandez-Lucas I., Becker A., Cowie A.. & other authors ( 2001;). The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci U S A98:9889–9894 [CrossRef][PubMed]
    [Google Scholar]
  16. Franssen H. J., Vijn I., Yang W. C., Bisseling T.. ( 1992;). Developmental aspects of the Rhizobium–legume symbiosis. Plant Mol Biol19:89–107 [CrossRef][PubMed]
    [Google Scholar]
  17. Freiberg C., Fellay R., Bairoch A., Broughton W. J., Rosenthal A., Perret X.. ( 1997;). Molecular basis of symbiosis between Rhizobium and legumes. Nature387:394–401 [CrossRef][PubMed]
    [Google Scholar]
  18. Gage D. J.. ( 2004;). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev68:280–300 [CrossRef][PubMed]
    [Google Scholar]
  19. Gage D. J., Long S. R.. ( 1998;). α-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol180:5739–5748[PubMed]
    [Google Scholar]
  20. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A.. & other authors ( 2001;). The composite genome of the legume symbiont Sinorhizobium meliloti . Science293:668–672 [CrossRef][PubMed]
    [Google Scholar]
  21. Glazebrook J., Walker G. C.. ( 1989;). A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti . Cell56:661–672 [CrossRef][PubMed]
    [Google Scholar]
  22. González-Guerrero M., Argüello J. M.. ( 2008;). Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci U S A105:5992–5997 [CrossRef][PubMed]
    [Google Scholar]
  23. González-Guerrero M., Raimunda D., Cheng X., Argüello J. M.. ( 2010;). Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa . Mol Microbiol78:1246–1258 [CrossRef][PubMed]
    [Google Scholar]
  24. Gouet P., Courcelle E., Stuart D. I., Métoz F.. ( 1999;). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics15:305–308 [CrossRef][PubMed]
    [Google Scholar]
  25. Gourdon P., Liu X. Y., Skjørringe T., Morth J. P., Møller L. B., Pedersen B. P., Nissen P.. ( 2011;). Crystal structure of a copper-transporting PIB-type ATPase. Nature475:59–64 [CrossRef][PubMed]
    [Google Scholar]
  26. Hassani B. K., Astier C., Nitschke W., Ouchane S.. ( 2010;). CtpA, a copper-translocating P-type ATPase involved in the biogenesis of multiple copper-requiring enzymes. J Biol Chem285:19330–19337 [CrossRef][PubMed]
    [Google Scholar]
  27. Hernández-Montes G., Argüello J. M., Valderrama B.. ( 2012;). Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiol12:249–263 [CrossRef][PubMed]
    [Google Scholar]
  28. Hodgkinson V., Petris M. J.. ( 2012;). Copper homeostasis at the host–pathogen interface. J Biol Chem287:13549–13555 [CrossRef][PubMed]
    [Google Scholar]
  29. Humbert M. V., Rasia R. M., Checa S. K., Soncini F. C.. ( 2013;). Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J Biol Chem288:20510–20519 [CrossRef][PubMed]
    [Google Scholar]
  30. Jamet A., Sigaud S., Van de Sype G., Puppo A., Hérouart D.. ( 2003;). Expression of the bacterial catalase genes during Sinorhizobium meliloti–Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact16:217–225 [CrossRef][PubMed]
    [Google Scholar]
  31. Jamet A., Mandon K., Puppo A., Hérouart D.. ( 2007;). H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol189:8741–8745 [CrossRef][PubMed]
    [Google Scholar]
  32. Kahn D., David M., Domergue O., Daveran M. L., Ghai J., Hirsch P. R., Batut J.. ( 1989;). Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol171:929–939[PubMed]
    [Google Scholar]
  33. Kiers E. T., Rousseau R. A., West S. A., Denison R. F.. ( 2003;). Host sanctions and the legume–rhizobium mutualism. Nature425:78–81 [CrossRef][PubMed]
    [Google Scholar]
  34. Koch H. G., Winterstein C., Saribas A. S., Alben J. O., Daldal F.. ( 2000;). Roles of the ccoGHIS gene products in the biogenesis of the cbb3-type cytochrome c oxidase. J Mol Biol297:49–65 [CrossRef][PubMed]
    [Google Scholar]
  35. Lagares A., Caetano-Anollés G., Niehaus K., Lorenzen J., Ljunggren H. D., Pühler A., Favelukes G.. ( 1992;). A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. J Bacteriol174:5941–5952[PubMed]
    [Google Scholar]
  36. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ C t method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  37. Lohmeyer E., Schröder S., Pawlik G., Trasnea P. I., Peters A., Daldal F., Koch H. G.. ( 2012;). The ScoI homologue SenC is a copper binding protein that interacts directly with the cbb 3-type cytochrome oxidase in Rhodobacter capsulatus . Biochim Biophys Acta1817:2005–2015 [CrossRef][PubMed]
    [Google Scholar]
  38. Lynch M., Kuramitsu H.. ( 2000;). Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect2:1245–1255 [CrossRef][PubMed]
    [Google Scholar]
  39. Macomber L., Imlay J. A.. ( 2009;). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A106:8344–8349 [CrossRef][PubMed]
    [Google Scholar]
  40. Mandal A. K., Yang Y., Kertesz T. M., Argüello J. M.. ( 2004;). Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem279:54802–54807 [CrossRef][PubMed]
    [Google Scholar]
  41. Meilhoc E., Cam Y., Skapski A., Bruand C.. ( 2010;). The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti . Mol Plant Microbe Interact23:748–759 [CrossRef][PubMed]
    [Google Scholar]
  42. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A. E., Barloy-Hubler F., Galibert F.. & other authors ( 2006;). Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc Natl Acad Sci U S A103:5230–5235 [CrossRef][PubMed]
    [Google Scholar]
  43. Mesa S., Hennecke H., Fischer H. M.. ( 2006;). A multitude of CRP/FNR-like transcription proteins in Bradyrhizobium japonicum . Biochem Soc Trans34:156–159 [CrossRef][PubMed]
    [Google Scholar]
  44. Murashige T. S., Skoog F.. ( 1962;). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant15:473–497 [CrossRef]
    [Google Scholar]
  45. Oke V., Long S. R.. ( 1999;). Bacteroid formation in the Rhizobium–legume symbiosis. Curr Opin Microbiol2:641–646 [CrossRef][PubMed]
    [Google Scholar]
  46. Osman D., Cavet J. S.. ( 2008;). Copper homeostasis in bacteria. Adv Appl Microbiol65:217–247 [CrossRef][PubMed]
    [Google Scholar]
  47. Padilla-Benavides T., McCann C. J., Argüello J. M.. ( 2013;). The mechanism of Cu+ transport ATPases: interaction with Cu+ chaperones and the role of transient metal-binding sites. J Biol Chem288:69–78 [CrossRef][PubMed]
    [Google Scholar]
  48. Philippot L.. ( 2005;). Denitrification in pathogenic bacteria: for better or worst?. Trends Microbiol13:191–192 [CrossRef][PubMed]
    [Google Scholar]
  49. Pontel L. B., Audero M. E., Espariz M., Checa S. K., Soncini F. C.. ( 2007;). GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol66:814–825 [CrossRef][PubMed]
    [Google Scholar]
  50. Preisig O., Zufferey R., Hennecke H.. ( 1996a;). The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb 3-type cytochrome oxidase. Arch Microbiol165:297–305 [CrossRef][PubMed]
    [Google Scholar]
  51. Preisig O., Zufferey R., Thöny-Meyer L., Appleby C. A., Hennecke H.. ( 1996b;). A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum . J Bacteriol178:1532–1538[PubMed]
    [Google Scholar]
  52. Rademacher C., Masepohl B.. ( 2012;). Copper-responsive gene regulation in bacteria. Microbiology158:2451–2464 [CrossRef][PubMed]
    [Google Scholar]
  53. Raimunda D., González-Guerrero M., Leeber B. W. III, Argüello J. M.. ( 2011;). The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals24:467–475 [CrossRef][PubMed]
    [Google Scholar]
  54. Reeve W. G., Tiwari R. P., Kale N. B., Dilworth M. J., Glenn A. R.. ( 2002;). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol43:981–991 [CrossRef][PubMed]
    [Google Scholar]
  55. Renalier M. H., Batut J., Ghai J., Terzaghi B., Gherardi M., David M., Garnerone A. M., Vasse J., Truchet G.. & other authors ( 1987;). A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus. J Bacteriol169:2231–2238[PubMed]
    [Google Scholar]
  56. Rensing C., McDevitt S. F.. ( 2013;). The copper metallome in prokaryotic cells. Met Ions Life Sci12:417–450 [CrossRef][PubMed]
    [Google Scholar]
  57. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P.. ( 2000;). CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A97:652–656 [CrossRef][PubMed]
    [Google Scholar]
  58. Rey F. E., Harwood C. S.. ( 2010;). FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris . Mol Microbiol75:1007–1020 [CrossRef][PubMed]
    [Google Scholar]
  59. Ridge P. G., Zhang Y., Gladyshev V. N.. ( 2008;). Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE3:e1378 [CrossRef][PubMed]
    [Google Scholar]
  60. Rodríguez-Haas B., Finney L., Vogt S., González-Melendi P., Imperial J., González-Guerrero M.. ( 2013;). Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics5:1247–1253 [CrossRef][PubMed]
    [Google Scholar]
  61. Samanovic M. I., Ding C., Thiele D. J., Darwin K. H.. ( 2012;). Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe11:106–115 [CrossRef][PubMed]
    [Google Scholar]
  62. Santos R., Hérouart D., Sigaud S., Touati D., Puppo A.. ( 2001;). Oxidative burst in alfalfa–Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact14:86–89 [CrossRef][PubMed]
    [Google Scholar]
  63. Schauser L., Roussis A., Stiller J., Stougaard J.. ( 1999;). A plant regulator controlling development of symbiotic root nodules. Nature402:191–195 [CrossRef][PubMed]
    [Google Scholar]
  64. Simon R., Priefer U., Puhler A.. ( 1983;). A broad host range mobilization system for in vivo genetic-engineering-transposon mutagenesis in gram-negative bacteria. Nat Biotechnol1:784–791 [CrossRef]
    [Google Scholar]
  65. Solioz M., Abicht H. K., Mermod M., Mancini S.. ( 2010;). Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem15:3–14 [CrossRef][PubMed]
    [Google Scholar]
  66. Somasegaran P.. ( 1985;). Inoculant production with diluted liquid cultures of Rhizobium spp. and autoclaved peat: evaluation of diluents, Rhizobium spp., peats, sterility requirements, storage, and plant effectiveness. Appl Environ Microbiol50:398–405[PubMed]
    [Google Scholar]
  67. Spaink H. P.. ( 2000;). Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol54:257–288 [CrossRef][PubMed]
    [Google Scholar]
  68. Stohs S. J., Bagchi D.. ( 1995;). Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med18:321–336 [CrossRef][PubMed]
    [Google Scholar]
  69. Stuurman N., Pacios Bras C., Schlaman H. R., Wijfjes A. H., Bloemberg G., Spaink H. P.. ( 2000;). Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. Mol Plant Microbe Interact13:1163–1169 [CrossRef][PubMed]
    [Google Scholar]
  70. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  71. Timmers A. C. J., Soupène E., Auriac M. C., de Billy F., Vasse J., Boistard P., Truchet G.. ( 2000;). Saprophytic intracellular rhizobia in alfalfa nodules. Mol Plant Microbe Interact13:1204–1213 [CrossRef][PubMed]
    [Google Scholar]
  72. Vasse J., de Billy F., Camut S., Truchet G.. ( 1990;). Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol172:4295–4306[PubMed]
    [Google Scholar]
  73. Vincent J.. ( 1970;). A Manual for the Practical Study of the Root-Nodule Bacteria. IBP Handbook 15 Oxford: Blackwell Scientific;
    [Google Scholar]
  74. Wagner D., Maser J., Lai B., Cai Z., Barry C. E. III, Höner Zu Bentrup K., Russell D. G., Bermudez L. E.. ( 2005;). Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J Immunol174:1491–1500[PubMed][CrossRef]
    [Google Scholar]
  75. Waldron K. J., Robinson N. J.. ( 2009;). How do bacterial cells ensure that metalloproteins get the correct metal?. Nat Rev Microbiol7:25–35 [CrossRef][PubMed]
    [Google Scholar]
  76. Watson R. J., Chan Y. K., Wheatcroft R., Yang A. F., Han S. H.. ( 1988;). Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol170:927–934[PubMed]
    [Google Scholar]
  77. Yuan M., Chu Z., Li X., Xu C., Wang S.. ( 2010;). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell22:3164–3176 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079137-0
Loading
/content/journal/micro/10.1099/mic.0.079137-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error