1887

Abstract

Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial signalling molecule produced by diguanylate cyclases of the GGDEF-domain family. Elevated c-di-GMP levels or increased GGDEF protein expression is frequently associated with the onset of sessility and biofilm formation in numerous bacterial species. Conversely, phosphodiesterase-dependent diminution of c-di-GMP levels by EAL- and HD-GYP-domain proteins is often accompanied by increased motility and virulence. In this study, we individually overexpressed 23 predicted GGDEF, EAL or HD-GYP-domain proteins encoded by the phytopathogen strain SCRI1043. MS-based detection of c-di-GMP and 5′-phosphoguanylyl-(3′-5′)-guanosine in these strains revealed that overexpression of most genes promoted modest 1–10-fold changes in cellular levels of c-di-GMP, with the exception of the GGDEF-domain proteins ECA0659 and ECA3374, which induced 1290- and 7660-fold increases, respectively. Overexpression of most EAL domain proteins increased motility, while overexpression of most GGDEF domain proteins reduced motility and increased poly-β-1,6--acetyl-glucosamine-dependent flocculation. In contrast to domain-based predictions, overexpression of the EAL protein ECA3549 or the HD-GYP protein ECA3548 increased c-di-GMP concentrations and reduced motility. Most overexpression constructs altered the levels of secreted cellulases, pectinases and proteases, confirming c-di-GMP regulation of virulence in . . However, there was no apparent correlation between virulence-factor induction and the domain class expressed or cellular c-di-GMP levels, suggesting that regulation was in response to specific effectors within the network, rather than total c-di-GMP concentration. Finally, we demonstrated that the cellular localization patterns vary considerably for GGDEF/EAL/HD-GYP proteins, indicating it is a likely factor restricting specific interactions within the c-di-GMP network.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076828-0
2014-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1427.html?itemId=/content/journal/micro/10.1099/mic.0.076828-0&mimeType=html&fmt=ahah

References

  1. Aldridge P., Paul R., Goymer P., Rainey P., Jenal U.. ( 2003;). Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus.. Mol Microbiol 47:, 1695–1708. [CrossRef][PubMed]
    [Google Scholar]
  2. Amikam D., Galperin M. Y.. ( 2006;). PilZ domain is part of the bacterial c-di-GMP binding protein. . Bioinformatics 22:, 3–6. [CrossRef][PubMed]
    [Google Scholar]
  3. Amikam D., Steinberger O., Shkolnik T., Ben-Ishai Z.. ( 1995;). The novel cyclic dinucleotide 3′-5′ cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. . Biochem J 311:, 921–927.[PubMed]
    [Google Scholar]
  4. Andrade M. O., Alegria M. C., Guzzo C. R., Docena C., Pareda Rosa M. C., Ramos C. H. I., Farah C. S.. ( 2006;). The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri.. Mol Microbiol 62:, 537–551. [CrossRef][PubMed]
    [Google Scholar]
  5. Arai R., Ueda H., Kitayama A., Kamiya N., Nagamune T.. ( 2001;). Design of the linkers which effectively separate domains of a bifunctional fusion protein. . Protein Eng 14:, 529–532. [CrossRef][PubMed]
    [Google Scholar]
  6. Aravind L., Ponting C. P.. ( 1997;). The GAF domain: an evolutionary link between diverse phototransducing proteins. . Trends Biochem Sci 22:, 458–459. [CrossRef][PubMed]
    [Google Scholar]
  7. Barends T. R. M., Hartmann E., Griese J. J., Beitlich T., Kirienko N. V., Ryjenkov D. A., Reinstein J., Shoeman R. L., Gomelsky M., Schlichting I.. ( 2009;). Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. . Nature 459:, 1015–1018. [CrossRef][PubMed]
    [Google Scholar]
  8. Bell K. S., Sebaihia M., Pritchard L., Holden M. T. G., Hyman L. J., Holeva M. C., Thomson N. R., Bentley S. D., Churcher L. J. C.. & other authors ( 2004;). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. . Proc Natl Acad Sci U S A 101:, 11105–11110. [CrossRef][PubMed]
    [Google Scholar]
  9. Bellini D., Caly D. L., McCarthy Y., Bumann M., An S.-Q., Dow J. M., Ryan R. P., Walsh M. A.. ( 2014;). Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. . Mol Microbiol 91:, 26–38. [CrossRef][PubMed]
    [Google Scholar]
  10. Bharati B. K., Sharma I. M., Kasetty S., Kumar M., Mukherjee R., Chatterji D.. ( 2012;). A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis.. Microbiology 158:, 1415–1427. [CrossRef][PubMed]
    [Google Scholar]
  11. Chan C., Paul R., Samoray D., Amiot N. C., Giese B., Jenal U., Schirmer T.. ( 2004;). Structural basis of activity and allosteric control of diguanylate cyclase. . Proc Natl Acad Sci U S A 101:, 17084–17089. [CrossRef][PubMed]
    [Google Scholar]
  12. Christen M., Christen B., Folcher M., Schauerte A., Jenal U.. ( 2005;). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. . J Biol Chem 280:, 30829–30837. [CrossRef][PubMed]
    [Google Scholar]
  13. Christen B., Christen M., Paul R., Schmid F., Folcher M., Jenoe P., Meuwly M., Jenal U.. ( 2006;). Allosteric control of cyclic di-GMP signaling. . J Biol Chem 281:, 32015–32024. [CrossRef][PubMed]
    [Google Scholar]
  14. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H.. ( 1985;). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. . J Clin Microbiol 22:, 996–1006.[PubMed]
    [Google Scholar]
  15. Cooper V. J., Salmond G. P.. ( 1993;). Molecular analysis of the major cellulase (CelV) of Erwinia carotovora: evidence for an evolutionary “mix-and-match” of enzyme domains. . Mol Gen Genet 241:, 341–350.[PubMed]
    [Google Scholar]
  16. Coulthurst S. J., Lilley K. S., Salmond G. P. C.. ( 2006;). Genetic and proteomic analysis of the role of LuxS in the enteric phytopathogen, Erwinia carotovora.. Mol Plant Pathol 7:, 31–45. [CrossRef][PubMed]
    [Google Scholar]
  17. Cserzö M., Wallin E., Simon I., von Heijne G., Elofsson A.. ( 1997;). Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. . Protein Eng 10:, 673–676. [CrossRef][PubMed]
    [Google Scholar]
  18. De N., Navarro M. V. A. S., Raghavan R. V., Sondermann H.. ( 2009;). Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. . J Mol Biol 393:, 619–633. [CrossRef][PubMed]
    [Google Scholar]
  19. Delepelaire P., Wandersman C.. ( 1991;). Characterization, localization and transmembrane organization of the three proteins PrtD, PrtE and PrtF necessary for protease secretion by the gram-negative bacterium Erwinia chrysanthemi.. Mol Microbiol 5:, 2427–2434. [CrossRef][PubMed]
    [Google Scholar]
  20. Duerig A., Abel S., Folcher M., Nicollier M., Schwede T., Amiot N., Giese B., Jenal U.. ( 2009;). Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. . Genes Dev 23:, 93–104. [CrossRef][PubMed]
    [Google Scholar]
  21. Fineran P. C., Williamson N. R., Lilley K. S., Salmond G. P. C.. ( 2007;). Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. . J Bacteriol 189:, 7653–7662. [CrossRef][PubMed]
    [Google Scholar]
  22. Galperin M. Y., Nikolskaya A. N., Koonin E. V.. ( 2001;). Novel domains of the prokaryotic two-component signal transduction systems. . FEMS Microbiol Lett 203:, 11–21. [CrossRef][PubMed]
    [Google Scholar]
  23. Güvener Z. T., Harwood C. S.. ( 2007;). Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. . Mol Microbiol 66:, 1459–1473.[PubMed]
    [Google Scholar]
  24. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  25. Guzzo C. R., Dunger G., Salinas R. K., Farah C. S.. ( 2013;). Structure of the PilZ-FimXEAL-c-di-GMP complex responsible for the regulation of bacterial type IV pilus biogenesis. . J Mol Biol 425:, 2174–2197. [CrossRef][PubMed]
    [Google Scholar]
  26. Hengge R.. ( 2009;). Principles of c-di-GMP signalling in bacteria. . Nat Rev Microbiol 7:, 263–273. [CrossRef][PubMed]
    [Google Scholar]
  27. Hinsa S. M., O'Toole G. A.. ( 2006;). Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. . Microbiology 152:, 1375–1383. [CrossRef][PubMed]
    [Google Scholar]
  28. Hinton J. C., Sidebotham J. M., Gill D. R., Salmond G. P.. ( 1989;). Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families. . Mol Microbiol 3:, 1785–1795. [CrossRef][PubMed]
    [Google Scholar]
  29. Hofmann K., Stoffel W.. ( 1993;). TMBASE - a database of membrane spanning protein segments. . Biol Chem Hoppe Seyler 374:, 166.
    [Google Scholar]
  30. Hou S., Freitas T., Larsen R. W., Piatibratov M., Sivozhelezov V., Yamamoto A., Meleshkevitch E. A., Zimmer M., Ordal G. W., Alam M.. ( 2001;). Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria. . Proc Natl Acad Sci U S A 98:, 9353–9358. [CrossRef][PubMed]
    [Google Scholar]
  31. Huang B., Whitchurch C. B., Mattick J. S.. ( 2003;). FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa.. J Bacteriol 185:, 7068–7076. [CrossRef][PubMed]
    [Google Scholar]
  32. Itoh Y., Rice J. D., Goller C., Pannuri A., Taylor J., Meisner J., Beveridge T. J., Preston J. F. III, Romeo T.. ( 2008;). Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. . J Bacteriol 190:, 3670–3680. [CrossRef][PubMed]
    [Google Scholar]
  33. Jones L. J., Carballido-López R., Errington J.. ( 2001;). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis.. Cell 104:, 913–922. [CrossRef][PubMed]
    [Google Scholar]
  34. Kotaka M., Dutta S., Lee H. C., Lim M. J. M., Wong Y., Rao F., Mitchell E. P., Liang Z. X., Lescar J.. ( 2009;). Expression, purification and preliminary crystallographic analysis of Pseudomonas aeruginosa RocR protein. . Acta Crystallogr Sect F Struct Biol Cryst Commun 65:, 1035–1038. [CrossRef][PubMed]
    [Google Scholar]
  35. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. ( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. . J Mol Biol 305:, 567–580. [CrossRef][PubMed]
    [Google Scholar]
  36. Kruse T., Bork-Jensen J., Gerdes K.. ( 2005;). The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. . Mol Microbiol 55:, 78–89. [CrossRef][PubMed]
    [Google Scholar]
  37. Kulasekara B. R., Kamischke C., Kulasekara H. D., Christen M., Wiggins P. A., Miller S. I.. ( 2013;). c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. . Elife 2:, e01402. [CrossRef][PubMed]
    [Google Scholar]
  38. Levet-Paulo M., Lazzaroni J.-C., Gilbert C., Atlan D., Doublet P., Vianney A.. ( 2011;). The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3′-5′)-cyclic dimeric GMP synthesis. . J Biol Chem 286:, 31136–31144. [CrossRef][PubMed]
    [Google Scholar]
  39. Lovering A. L., Capeness M. J., Lambert C., Hobley L., Sockett R. E.. ( 2011;). The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. . MBio 2:, e00163-11. [CrossRef][PubMed]
    [Google Scholar]
  40. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C.. & other authors ( 2011;). CDD: a conserved domain database for the functional annotation of proteins. . Nucleic Acids Res 39: (Database), D225–D229. [CrossRef][PubMed]
    [Google Scholar]
  41. McCarthy Y., Ryan R. P., O’Donovan K., He Y.-Q., Jiang B.-L., Feng J.-X., Tang J.-L., Dow J. M.. ( 2008;). The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris.. Mol Plant Pathol 9:, 819–824. [CrossRef][PubMed]
    [Google Scholar]
  42. Mills E., Pultz I. S., Kulasekara H. D., Miller S. I.. ( 2011;). The bacterial second messenger c-di-GMP: mechanisms of signalling. . Cell Microbiol 13:, 1122–1129. [CrossRef][PubMed]
    [Google Scholar]
  43. Minasov G., Padavattan S., Shuvalova L., Brunzelle J. S., Miller D. J., Baslé A., Massa C., Collart F. R., Schirmer T., Anderson W. F.. ( 2009;). Crystal structures of YkuI and its complex with second messenger cyclic Di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. . J Biol Chem 284:, 13174–13184. [CrossRef][PubMed]
    [Google Scholar]
  44. Navarro M. V. A. S., De N., Bae N., Wang Q., Sondermann H.. ( 2009;). Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. . Structure 17:, 1104–1116. [CrossRef][PubMed]
    [Google Scholar]
  45. Newell P. D., Monds R. D., O'Toole G. A.. ( 2009;). LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. . Proc Natl Acad Sci U S A 106:, 3461–3466. [CrossRef][PubMed]
    [Google Scholar]
  46. Paul R., Abel S., Wassmann P., Beck A., Heerklotz H., Jenal U.. ( 2007;). Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. . J Biol Chem 282:, 29170–29177. [CrossRef][PubMed]
    [Google Scholar]
  47. Pérez-Mendoza D., Coulthurst S. J., Humphris S., Campbell E., Welch M., Toth I. K., Salmond G. P. C.. ( 2011a;). A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. . Mol Microbiol 82:, 719–733. [CrossRef][PubMed]
    [Google Scholar]
  48. Pérez-Mendoza D., Coulthurst S. J., Sanjuán J., Salmond G. P. C.. ( 2011b;). N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. . Microbiology 157:, 3340–3348. [CrossRef][PubMed]
    [Google Scholar]
  49. Pratt J. T., Tamayo R., Tischler A. D., Camilli A.. ( 2007;). PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae.. J Biol Chem 282:, 12860–12870. [CrossRef][PubMed]
    [Google Scholar]
  50. Rao F., Yang Y., Qi Y., Liang Z.-X.. ( 2008;). Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa.. J Bacteriol 190:, 3622–3631. [CrossRef][PubMed]
    [Google Scholar]
  51. Rao F., Qi Y., Chong H. S., Kotaka M., Li B., Li J., Lescar J., Tang K., Liang Z.-X.. ( 2009;). The functional role of a conserved loop in EAL domain-based cyclic di-GMP-specific phosphodiesterase. . J Bacteriol 191:, 4722–4731. [CrossRef][PubMed]
    [Google Scholar]
  52. Reeves P. J., Whitcombe D., Wharam S., Gibson M., Allison G., Bunce N., Barallon R., Douglas P., Mulholland V.. & other authors ( 1993;). Molecular cloning and characterization of 13 out genes from Erwinia carotovora subspecies carotovora: genes encoding members of a general secretion pathway (GSP) widespread in gram-negative bacteria. . Mol Microbiol 8:, 443–456. [CrossRef][PubMed]
    [Google Scholar]
  53. Robert-Paganin J., Nonin-Lecomte S., Réty S.. ( 2012;). Crystal structure of an EAL domain in complex with reaction product 5′-pGpG. . PLoS ONE 7:, e52424. [CrossRef][PubMed]
    [Google Scholar]
  54. Ross P., Weinhouse H., Aloni Y., Michaeli D., Weinberger-Ohana P., Mayer R., Braun S., de Vroom E., van der Marel G. A.. & other authors ( 1987;). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. . Nature 325:, 279–281. [CrossRef][PubMed]
    [Google Scholar]
  55. Ryan R. P., Fouhy Y., Lucey J. F., Crossman L. C., Spiro S., He Y.-W., Zhang L.-H., Heeb S., Cámara M.. & other authors ( 2006;). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. . Proc Natl Acad Sci U S A 103:, 6712–6717. [CrossRef][PubMed]
    [Google Scholar]
  56. Ryan R. P., McCarthy Y., Andrade M., Farah C. S., Armitage J. P., Dow J. M.. ( 2010;). Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris.. Proc Natl Acad Sci U S A 107:, 5989–5994. [CrossRef][PubMed]
    [Google Scholar]
  57. Ryjenkov D. A., Simm R., Römling U., Gomelsky M.. ( 2006;). The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. . J Biol Chem 281:, 30310–30314. [CrossRef][PubMed]
    [Google Scholar]
  58. Schmidt A. J., Ryjenkov D. A., Gomelsky M.. ( 2005;). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. . J Bacteriol 187:, 4774–4781. [CrossRef][PubMed]
    [Google Scholar]
  59. Simm R., Morr M., Remminghorst U., Andersson M., Römling U.. ( 2009;). Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. . Anal Biochem 386:, 53–58. [CrossRef][PubMed]
    [Google Scholar]
  60. Smith T. G., Hoover T. R.. ( 2009;). Deciphering bacterial flagellar gene regulatory networks in the genomic era. . Adv Appl Microbiol 67:, 257–295. [CrossRef][PubMed]
    [Google Scholar]
  61. Smith K. D., Shanahan C. A., Moore E. L., Simon A. C., Strobel S. A.. ( 2011;). Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. . Proc Natl Acad Sci U S A 108:, 7757–7762. [CrossRef][PubMed]
    [Google Scholar]
  62. Solano C., García B., Latasa C., Toledo-Arana A., Zorraquino V., Valle J., Casals J., Pedroso E., Lasa I.. ( 2009;). Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. . Proc Natl Acad Sci U S A 106:, 7997–8002. [CrossRef][PubMed]
    [Google Scholar]
  63. Sommerfeldt N., Possling A., Becker G., Pesavento C., Tschowri N., Hengge R.. ( 2009;). Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli.. Microbiology 155:, 1318–1331. [CrossRef][PubMed]
    [Google Scholar]
  64. Sondermann H., Shikuma N. J., Yildiz F. H.. ( 2012;). You’ve come a long way: c-di-GMP signaling. . Curr Opin Microbiol 15:, 140–146. [CrossRef][PubMed]
    [Google Scholar]
  65. Sourjik V., Berg H. C.. ( 2000;). Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. . Mol Microbiol 37:, 740–751. [CrossRef][PubMed]
    [Google Scholar]
  66. Sudarsan N., Lee E. R., Weinberg Z., Moy R. H., Kim J. N., Link K. H., Breaker R. R.. ( 2008;). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. . Science 321:, 411–413. [CrossRef][PubMed]
    [Google Scholar]
  67. Tagliabue L., Antoniani D., Maciag A., Bocci P., Raffaelli N., Landini P.. ( 2010;). The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. . Microbiology 156:, 2901–2911. [CrossRef][PubMed]
    [Google Scholar]
  68. Tchigvintsev A., Xu X., Singer A., Chang C., Brown G., Proudfoot M., Cui H., Flick R., Anderson W. F.. & other authors ( 2010;). Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. . J Mol Biol 402:, 524–538. [CrossRef][PubMed]
    [Google Scholar]
  69. Tuckerman J. R., Gonzalez G., Sousa E. H. S., Wan X., Saito J. A., Alam M., Gilles-Gonzalez M.-A.. ( 2009;). An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. . Biochemistry 48:, 9764–9774. [CrossRef][PubMed]
    [Google Scholar]
  70. Wolfe A. J., Visick K. L.. ( 2008;). Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. . J Bacteriol 190:, 463–475. [CrossRef][PubMed]
    [Google Scholar]
  71. Yi X., Yamazaki A., Biddle E., Zeng Q., Yang C.-H.. ( 2010;). Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii.. Mol Microbiol 77:, 787–800. [CrossRef][PubMed]
    [Google Scholar]
  72. Zorraquino V., García B., Latasa C., Echeverz M., Toledo-Arana A., Valle J., Lasa I., Solano C.. ( 2013;). Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. . J Bacteriol 195:, 417–428. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076828-0
Loading
/content/journal/micro/10.1099/mic.0.076828-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error