1887

Abstract

The primary mobile electron-carrier in the aerobic respiratory chain of is ubiquinone. Demethylmenaquinone and menaquinone are alternative electron-carriers involved in anaerobic respiration. Ubiquinone biosynthesis was disrupted in strains bearing deletions of the or genes. In soft tryptone agar both mutant strains swam poorly. However, the deletion mutant strain produced suppressor mutant strains with somewhat rescued motility and growth. Six independent suppressor mutants were purified and comparative genome sequence analysis revealed that they each bore a single new missense mutation, which localized to genes for subunits of NADH : quinone oxidoreductase-1. Four mutants bore an identical () mutation, one mutant bore a () mutation and one mutant bore a () mutation. The NuoG subunit is part of the hydrophilic domain of NADH : quinone oxidoreductase-1 and the NuoM and NuoN subunits are part of the hydrophobic membrane-embedded domain. Respiration was rescued and the suppressed mutant strains grew better in Luria–Bertani broth medium and could use -malate as a sole carbon source. The quinone pool of the cytoplasmic membrane was characterized by reversed-phase HPLC. Wild-type cells made ubiquinone and menaquinone. Strains with a deletion mutation made demethylmenaquinone and menaquinone and the deletion mutant strain made demethylmenaquinone and 2-octaprenyl-6-methoxy-1,4-benzoquinone; the total quinone pool was reduced. Immunoblotting found increased NADH : quinone oxidoreductase-1 levels for ubiquinone-biosynthesis mutant strains and enzyme assays measured electron transfer from NADH to demethylmenaquinone or menaquinone. Under certain growth conditions the suppressor mutations improved electron flow activity of NADH : quinone oxidoreductase-1 for cells bearing a deletion mutation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075945-0
2014-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1075.html?itemId=/content/journal/micro/10.1099/mic.0.075945-0&mimeType=html&fmt=ahah

References

  1. Bar Tana J., Howlett B. J., Koshland D. E. Jr. ( 1977;). Flagellar formation in Escherichia coli electron transport mutants. . J Bacteriol 130:, 787–792.[PubMed]
    [Google Scholar]
  2. Baradaran R., Berrisford J. M., Minhas G. S., Sazanov L. A.. ( 2013;). Crystal structure of the entire respiratory complex I. . Nature 494:, 443–448. [CrossRef][PubMed]
    [Google Scholar]
  3. Barker C. S., Samatey F. A.. ( 2012;). Cross-complementation study of the flagellar type III export apparatus membrane protein FlhB. . PLoS ONE 7:, e44030. [CrossRef][PubMed]
    [Google Scholar]
  4. Bekker M., Kramer G., Hartog A. F., Wagner M. J., de Koster C. G., Hellingwerf K. J., de Mattos M. J.. ( 2007;). Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth. . Microbiology 153:, 1974–1980. [CrossRef][PubMed]
    [Google Scholar]
  5. Borisov V. B., Murali R., Verkhovskaya M. L., Bloch D. A., Han H., Gennis R. B., Verkhovsky M. I.. ( 2011;). Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. . Proc Natl Acad Sci U S A 108:, 17320–17324. [CrossRef][PubMed]
    [Google Scholar]
  6. Brandt U.. ( 2006;). Energy converting NADH:quinone oxidoreductase (complex I). . Annu Rev Biochem 75:, 69–92. [CrossRef][PubMed]
    [Google Scholar]
  7. Calhoun M. W., Gennis R. B.. ( 1993;). Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. . J Bacteriol 175:, 3013–3019.[PubMed]
    [Google Scholar]
  8. Carroll J., Fearnley I. M., Skehel J. M., Shannon R. J., Hirst J., Walker J. E.. ( 2006;). Bovine complex I is a complex of 45 different subunits. . J Biol Chem 281:, 32724–32727. [CrossRef][PubMed]
    [Google Scholar]
  9. Cecchini G., Maklashina E., Yankovskaya V., Iverson T. M., Iwata S.. ( 2003;). Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases. . FEBS Lett 545:, 31–38. [CrossRef][PubMed]
    [Google Scholar]
  10. Cherepanov P. P., Wackernagel W.. ( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. . Gene 158:, 9–14. [CrossRef][PubMed]
    [Google Scholar]
  11. Chevance F. F., Hughes K. T.. ( 2008;). Coordinating assembly of a bacterial macromolecular machine. . Nat Rev Microbiol 6:, 455–465. [CrossRef][PubMed]
    [Google Scholar]
  12. Cox G. B., Gibson F., Pittard J.. ( 1968;). Mutant strains of Escherichia coli K-12 unable to form ubiquinone. . J Bacteriol 95:, 1591–1598.[PubMed]
    [Google Scholar]
  13. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  14. Efremov R. G., Sazanov L. A.. ( 2011a;). Respiratory complex I: ‘steam engine’ of the cell?. Curr Opin Struct Biol 21:, 532–540. [CrossRef][PubMed]
    [Google Scholar]
  15. Efremov R. G., Sazanov L. A.. ( 2011b;). Structure of the membrane domain of respiratory complex I. . Nature 476:, 414–420. [CrossRef][PubMed]
    [Google Scholar]
  16. Friedrich T., Pohl T.. ( 2007;). NADH as donor. . EcoSal Plus 2007. Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  17. Hayashi T., Stuchebrukhov A. A.. ( 2010;). Electron tunneling in respiratory complex I. . Proc Natl Acad Sci U S A 107:, 19157–19162. [CrossRef][PubMed]
    [Google Scholar]
  18. Hunte C., Zickermann V., Brandt U.. ( 2010;). Functional modules and structural basis of conformational coupling in mitochondrial complex I. . Science 329:, 448–451. [CrossRef][PubMed]
    [Google Scholar]
  19. Jiang W., Metcalf W. W., Lee K. S., Wanner B. L.. ( 1995;). Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. . J Bacteriol 177:, 6411–6421.[PubMed]
    [Google Scholar]
  20. Karlinsey J. E.. ( 2007;). λ-Red genetic engineering in Salmonella enterica serovar Typhimurium. . Methods Enzymol 421:, 199–209. [CrossRef][PubMed]
    [Google Scholar]
  21. Kervinen M., Pätsi J., Finel M., Hassinen I. E.. ( 2004;). A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. . Biochemistry 43:, 773–781. [CrossRef][PubMed]
    [Google Scholar]
  22. Lee P. T., Hsu A. Y., Ha H. T., Clarke C. F.. ( 1997;). A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. . J Bacteriol 179:, 1748–1754.[PubMed]
    [Google Scholar]
  23. Li H., Ruan J., Durbin R.. ( 2008;). Mapping short DNA sequencing reads and calling variants using mapping quality scores. . Genome Res 18:, 1851–1858. [CrossRef][PubMed]
    [Google Scholar]
  24. Meganathan R., Kwon O.. ( 2009;). Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q). . EcoSal Plus 2009. Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  25. Meinhardt S. W., Wang D. C., Hon-nami K., Yagi T., Oshima T., Ohnishi T.. ( 1990;). Studies on the NADH-menaquinone oxidoreductase segment of the respiratory chain in Thermus thermophilus HB-8. . J Biol Chem 265:, 1360–1368.[PubMed]
    [Google Scholar]
  26. Mitchell P.. ( 1979;). Keilin’s respiratory chain concept and its chemiosmotic consequences. . Science 206:, 1148–1159. [CrossRef][PubMed]
    [Google Scholar]
  27. Ohnishi K., Fan F., Schoenhals G. J., Kihara M., Macnab R. M.. ( 1997;). The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly. . J Bacteriol 179:, 6092–6099.[PubMed]
    [Google Scholar]
  28. Ohnishi T., Nakamaru-Ogiso E., Ohnishi S. T.. ( 2010;). A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). . FEBS Lett 584:, 4131–4137. [CrossRef][PubMed]
    [Google Scholar]
  29. Ryu J., Hartin R. J.. ( 1990;). Quick transformation in Salmonella typhimurium LT2. . Biotechniques 8:, 43–45.[PubMed]
    [Google Scholar]
  30. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: A Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  31. Sezonov G., Joseleau-Petit D., D’Ari R.. ( 2007;). Escherichia coli physiology in Luria-Bertani broth. . J Bacteriol 189:, 8746–8749. [CrossRef][PubMed]
    [Google Scholar]
  32. Sharma P., Teixeira de Mattos M. J., Hellingwerf K. J., Bekker M.. ( 2012;). On the function of the various quinone species in Escherichia coli. . FEBS J 279:, 3364–3373. [CrossRef][PubMed]
    [Google Scholar]
  33. Sinha P. K., Torres-Bacete J., Nakamaru-Ogiso E., Castro-Guerrero N., Matsuno-Yagi A., Yagi T.. ( 2009;). Critical roles of subunit NuoH (ND1) in the assembly of peripheral subunits with the membrane domain of Escherichia coli NDH-1. . J Biol Chem 284:, 9814–9823. [CrossRef][PubMed]
    [Google Scholar]
  34. Sinha P. K., Nakamaru-Ogiso E., Torres-Bacete J., Sato M., Castro-Guerrero N., Ohnishi T., Matsuno-Yagi A., Yagi T.. ( 2012;). Electron transfer in subunit NuoI (TYKY) of Escherichia coli NADH:quinone oxidoreductase (NDH-1). . J Biol Chem 287:, 17363–17373. [CrossRef][PubMed]
    [Google Scholar]
  35. Søballe B., Poole R. K.. ( 1998;). Requirement for ubiquinone downstream of cytochrome(s) b in the oxygen-terminated respiratory chains of Escherichia coli K-12 revealed using a null mutant allele of ubiCA. . Microbiology 144:, 361–373. [CrossRef][PubMed]
    [Google Scholar]
  36. Toker A. S., Kihara M., Macnab R. M.. ( 1996;). Deletion analysis of the FliM flagellar switch protein of Salmonella typhimurium. . J Bacteriol 178:, 7069–7079.[PubMed]
    [Google Scholar]
  37. Torres-Bacete J., Nakamaru-Ogiso E., Matsuno-Yagi A., Yagi T.. ( 2007;). Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. . J Biol Chem 282:, 36914–36922. [CrossRef][PubMed]
    [Google Scholar]
  38. Torres-Bacete J., Sinha P. K., Matsuno-Yagi A., Yagi T.. ( 2011;). Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from Escherichia coli. . J Biol Chem 286:, 34007–34014. [CrossRef][PubMed]
    [Google Scholar]
  39. Unden G., Bongaerts J.. ( 1997;). Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. . Biochim Biophys Acta 1320:, 217–234. [CrossRef][PubMed]
    [Google Scholar]
  40. Verkhovskaya M., Bloch D. A.. ( 2013;). Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. . Int J Biochem Cell Biol 45:, 491–511. [CrossRef][PubMed]
    [Google Scholar]
  41. Wittekindt C., Schwarz M., Friedrich T., Koslowski T.. ( 2009;). Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: an unusual mechanism deduced from atomistic theory and bioinformatics. . J Am Chem Soc 131:, 8134–8140. [CrossRef][PubMed]
    [Google Scholar]
  42. Yamaguchi S., Fujita H., Sugata K., Taira T., Iino T.. ( 1984;). Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. . J Gen Microbiol 130:, 255–265.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075945-0
Loading
/content/journal/micro/10.1099/mic.0.075945-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error