1887

Abstract

The polyamines norspermidine and spermidine are among the environmental signals that regulate biofilm formation. The effects of these polyamines are mediated by NspS, a member of the bacterial periplasmic solute binding protein superfamily. Almost all members of this superfamily characterized to date are components of ATP-binding cassette-type transporters involved in nutrient uptake. Consequently, in the current annotation of the genome, NspS has been assigned a function in transport. The objective of this study was to further characterize NspS and investigate its potential role in transport. Our results support a role for NspS in signal transduction in response to norspermidine and spermidine, but not their transport. In addition, we provide evidence that these polyamine signals are processed by c-di-GMP signalling networks in the cell. Furthermore, we present comparative genomics analyses which reveal the presence of NspS-like proteins in a variety of bacteria, suggesting that periplasmic ligand binding proteins may be widely utilized for sensory transduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075903-0
2014-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/832.html?itemId=/content/journal/micro/10.1099/mic.0.075903-0&mimeType=html&fmt=ahah

References

  1. Bomchil N., Watnick P., Kolter R.. ( 2003;). Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. . J Bacteriol 185:, 1384–1390. [CrossRef][PubMed]
    [Google Scholar]
  2. Burrell M., Hanfrey C. C., Murray E. J., Stanley-Wall N. R., Michael A. J.. ( 2010;). Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. . J Biol Chem 285:, 39224–39238. [CrossRef][PubMed]
    [Google Scholar]
  3. Christensen H., Bertelsen M. F., Bojesen A. M., Bisgaard M.. ( 2012;). Classification of Pasteurella species B as Pasteurella oralis sp. nov.. Int J Syst Evol Microbiol 62:, 1396–1401. [CrossRef][PubMed]
    [Google Scholar]
  4. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  5. Davidson A. L., Dassa E., Orelle C., Chen J.. ( 2008;). Structure, function, and evolution of bacterial ATP-binding cassette systems. . Microbiol Mol Biol Rev 72:, 317–364. [CrossRef][PubMed]
    [Google Scholar]
  6. Eym Y., Park Y., Park C.. ( 1996;). Genetically probing the regions of ribose-binding protein involved in permease interaction. . Mol Microbiol 21:, 695–702. [CrossRef][PubMed]
    [Google Scholar]
  7. Gardina P., Conway C., Kossman M., Manson M.. ( 1992;). Aspartate and maltose-binding protein interact with adjacent sites in the Tar chemotactic signal transducer of Escherichia coli. . J Bacteriol 174:, 1528–1536.[PubMed]
    [Google Scholar]
  8. Gillespie J. J., Wattam A. R., Cammer S. A., Gabbard J. L., Shukla M. P., Dalay O., Driscoll T., Hix D., Mane S. P.. & other authors ( 2011;). PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. . Infect Immun 79:, 4286–4298. [CrossRef][PubMed]
    [Google Scholar]
  9. Giuliani S. E., Frank A. M., Collart F. R.. ( 2008;). Functional assignment of solute-binding proteins of ABC transporters using a fluorescence-based thermal shift assay. . Biochemistry 47:, 13974–13984. [CrossRef][PubMed]
    [Google Scholar]
  10. Goytia M., Dhulipala V. L., Shafer W. M.. ( 2013;). Spermine impairs biofilm formation by Neisseria gonorrhoeae. . FEMS Microbiol Lett 343:, 64–69. [CrossRef][PubMed]
    [Google Scholar]
  11. Hamana K.. ( 1997;). Polyamine distribution patterns within the families Aeromonadaceae, Vibrionaceae, Pasteurellaceae, and Halomonadaceae, and related genera of the gamma subclass of the Proteobacteria. . J Gen Appl Microbiol 43:, 49–59. [CrossRef][PubMed]
    [Google Scholar]
  12. Hamana K., Itoh T.. ( 2001;). Polyamines of the hyperthermophilic archaebacteria belonging to the genera Thermococcus and Methanothermus and two new genera Caldivirga and Palaeococcus. . Microbios 104:, 105–114.[PubMed]
    [Google Scholar]
  13. Hamana K., Niitsu M., Samejima K., Matsuzaki S.. ( 1991;). Novel tetraamines, pentaamines and hexaamines in sea-urchin, sea-cucumber, sea squirt and bivalves. . Comp Biochem Physiol B 100:, 59–62.
    [Google Scholar]
  14. Hamana K., Niitsu M., Samejima K.. ( 1998;). Unusual polyamines in aquatic plants: the occurrence of homospermidine, norspermidine, thermospermine, norspermine, aminopropylhomospermidine, bis(aminopropyl)ethanediamine, and methylspermidine. . Can J Bot 76:, 130–133.
    [Google Scholar]
  15. Hamana K., Niitsu M., Samejima K., Itoh T.. ( 2001;). Polyamines of the thermophilic eubacteria belonging to the genera Thermosipho, Thermaerobacter and Caldicellulosiruptor. . Microbios 104:, 177–185.[PubMed]
    [Google Scholar]
  16. Hamana K., Aizaki T., Arai E., Saito A., Uchikata K., Ohnishi H.. ( 2004;). Distribution of norspermidine as a cellular polyamine within micro green algae including non-photosynthetic achlorophyllous Polytoma, Polytomella, Prototheca and Helicosporidium. . J Gen Appl Microbiol 50:, 289–295. [CrossRef][PubMed]
    [Google Scholar]
  17. Haugo A. J., Watnick P. I.. ( 2002;). Vibrio cholerae CytR is a repressor of biofilm development. . Mol Microbiol 45:, 471–483. [CrossRef][PubMed]
    [Google Scholar]
  18. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. . Gene 77:, 51–59. [CrossRef][PubMed]
    [Google Scholar]
  19. Hu X., Zhao J., DeGrado W. F., Binns A. N.. ( 2013;). Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. . Proc Natl Acad Sci U S A 110:, 678–683. [CrossRef][PubMed]
    [Google Scholar]
  20. Igarashi K., Kashiwagi K.. ( 2010;). Modulation of cellular function by polyamines. . Int J Biochem Cell Biol 42:, 39–51. [CrossRef][PubMed]
    [Google Scholar]
  21. Karatan E., Duncan T. R., Watnick P. I.. ( 2005;). NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. . J Bacteriol 187:, 7434–7443. [CrossRef][PubMed]
    [Google Scholar]
  22. Kashiwagi K., Hosokawa N., Furuchi T., Kobayashi H., Sasakawa C., Yoshikawa M., Igarashi K.. ( 1990;). Isolation of polyamine transport-deficient mutants of Escherichia coli and cloning of the genes for polyamine transport proteins. . J Biol Chem 265:, 20893–20897.[PubMed]
    [Google Scholar]
  23. Kashiwagi K., Pistocchi R., Shibuya S., Sugiyama S., Morikawa K., Igarashi K.. ( 1996;). Spermidine-preferential uptake system in Escherichia coli. Identification of amino acids involved in polyamine binding in PotD protein. . J Biol Chem 271:, 12205–12208. [CrossRef][PubMed]
    [Google Scholar]
  24. Keating T. A., Marshall C. G., Walsh C. T.. ( 2000;). Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. . Biochemistry 39:, 15513–15521. [CrossRef][PubMed]
    [Google Scholar]
  25. Kolodkin-Gal I., Cao S., Chai L., Böttcher T., Kolter R., Clardy J., Losick R.. ( 2012;). A self-produced trigger for biofilm disassembly that targets exopolysaccharide. . Cell 149:, 684–692. [CrossRef][PubMed]
    [Google Scholar]
  26. Lee J., Sperandio V., Frantz D. E., Longgood J., Camilli A., Phillips M. A., Michael A. J.. ( 2009;). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. . J Biol Chem 284:, 9899–9907. [CrossRef][PubMed]
    [Google Scholar]
  27. McGinnis M. W., Parker Z. M., Walter N. E., Rutkovsky A. C., Cartaya-Marin C., Karatan E.. ( 2009;). Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways. . FEMS Microbiol Lett 299:, 166–174. [CrossRef][PubMed]
    [Google Scholar]
  28. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L.. ( 1996;). Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. . Plasmid 35:, 1–13. [CrossRef][PubMed]
    [Google Scholar]
  29. Miller V. L., Mekalanos J. J.. ( 1988;). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. . J Bacteriol 170:, 2575–2583.[PubMed]
    [Google Scholar]
  30. Neiditch M. B., Federle M. J., Miller S. T., Bassler B. L., Hughson F. M.. ( 2005;). Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. . Mol Cell 18:, 507–518. [CrossRef][PubMed]
    [Google Scholar]
  31. Ni S., Forouhar F., Bussiere D. E., Robinson H., Kennedy M. A.. ( 2006;). Crystal structure of VC0702 at 2.0 Å: conserved hypothetical protein from Vibrio cholerae. . Proteins 63:, 733–741. [CrossRef][PubMed]
    [Google Scholar]
  32. Niesen F. H., Berglund H., Vedadi M.. ( 2007;). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. . Nat Protoc 2:, 2212–2221. [CrossRef][PubMed]
    [Google Scholar]
  33. Parker Z. M., Pendergraft S. S., Sobieraj J., McGinnis M. M., Karatan E.. ( 2012;). Elevated levels of the norspermidine synthesis enzyme NspC enhance Vibrio cholerae biofilm formation without affecting intracellular norspermidine concentrations. . FEMS Microbiol Lett 329:, 18–27. [CrossRef][PubMed]
    [Google Scholar]
  34. Patel C. N., Wortham B. W., Lines J. L., Fetherston J. D., Perry R. D., Oliveira M. A.. ( 2006;). Polyamines are essential for the formation of plague biofilm. . J Bacteriol 188:, 2355–2363. [CrossRef][PubMed]
    [Google Scholar]
  35. Römling U., Galperin M. Y., Gomelsky M.. ( 2013;). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. . Microbiol Mol Biol Rev 77:, 1–52. [CrossRef][PubMed]
    [Google Scholar]
  36. Ryjenkov D. A., Tarutina M., Moskvin O. V., Gomelsky M.. ( 2005;). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. . J Bacteriol 187:, 1792–1798. [CrossRef][PubMed]
    [Google Scholar]
  37. Shilton B. H., Flocco M. M., Nilsson M., Mowbray S. L.. ( 1996;). Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. . J Mol Biol 264:, 350–363. [CrossRef][PubMed]
    [Google Scholar]
  38. Tabor C. W., Tabor H.. ( 1984;). Polyamines. . Annu Rev Biochem 53:, 749–790. [CrossRef][PubMed]
    [Google Scholar]
  39. Tan K., Chang C., Cuff M., Osipiuk J., Landorf E., Mack J. C., Zerbs S., Joachimiak A., Collart F. R.. ( 2013;). Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids. . Proteins 81:, 1709–1726. [CrossRef][PubMed]
    [Google Scholar]
  40. Trimble M. J., McCarter L. L.. ( 2011;). Bis-(3′-5′)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. . Proc Natl Acad Sci U S A 108:, 18079–18084. [CrossRef][PubMed]
    [Google Scholar]
  41. Ulijasz A. T., Grenader A., Weisblum B.. ( 1996;). A vancomycin-inducible lacZ reporter system in Bacillus subtilis: induction by antibiotics that inhibit cell wall synthesis and by lysozyme. . J Bacteriol 178:, 6305–6309.[PubMed]
    [Google Scholar]
  42. Waldor M. K., Mekalanos J. J.. ( 1994;). Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. . J Infect Dis 170:, 278–283. [CrossRef][PubMed]
    [Google Scholar]
  43. Yamamoto S., Nakao H., Koumoto Y., Shinoda S.. ( 1989;). Identification of N1-acetylnorspermidine in Vibrio parahaemolyticus and an enzyme activity responsible for its formation. . FEMS Microbiol Lett 61:, 225–230. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhao J., Binns A. N.. ( 2011;). Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens. . J Bacteriol 193:, 6586–6596. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075903-0
Loading
/content/journal/micro/10.1099/mic.0.075903-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error