1887

Abstract

Two putative pathway-specific regulators have been identified in the collismycin A gene cluster: ClmR1, belonging to the TetR-family, and the LuxR-family transcriptional regulator ClmR2. Inactivation of led to a moderate increase of collismycin A yields along with an early onset of its production, suggesting an inhibitory role for the product of this gene. Inactivation of abolished collismycin A biosynthesis, whereas overexpression of ClmR2 led to a fourfold increase in production yields, indicating that ClmR2 is an activator of collismycin A biosynthesis. Expression analyses of the collismycin gene cluster in the wild-type strain and in Δ and Δ mutants confirmed the role proposed for both regulatory genes, revealing that ClmR2 positively controls the expression of most of the genes in the cluster and ClmR1 negatively regulates both its own expression and that of . Additionally, production assays and further transcription analyses confirmed the existence of a higher regulatory level modulating collismycin A biosynthesis in response to iron concentrations in the culture medium. Thus, high iron levels inhibit collismycin A biosynthesis through the repression of transcription. These results have allowed us to propose a regulatory model that integrates the effect of iron as the main environmental stimulus controlling collismycin A biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075218-0
2014-03-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/467.html?itemId=/content/journal/micro/10.1099/mic.0.075218-0&mimeType=html&fmt=ahah

References

  1. Antonini I., Claudi F., Cristalli G., Franchetti P., Grifantini M., Martelli S.. ( 1981;). N*-N*-S* tridentate ligand system as potential antitumor agents. . J Med Chem 24:, 1181–1184. [CrossRef][PubMed]
    [Google Scholar]
  2. Bascarán V., Hardisson C., Braña A. F.. ( 1989;). Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. . J Gen Microbiol 135:, 2465–2474.[PubMed]
    [Google Scholar]
  3. Bérdy J.. ( 2012;). Thoughts and facts about antibiotics: where we are now and where we are heading. . J Antibiot 65:, 385–395. [CrossRef][PubMed]
    [Google Scholar]
  4. Berntsson R. P., Smits S. H., Schmitt L., Slotboom D. J., Poolman B.. ( 2010;). A structural classification of substrate-binding proteins. . FEBS Lett 584:, 2606–2617. [CrossRef][PubMed]
    [Google Scholar]
  5. Bibb M. J.. ( 2005;). Regulation of secondary metabolism in streptomycetes. . Curr Opin Microbiol 8:, 208–215. [CrossRef][PubMed]
    [Google Scholar]
  6. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E.. ( 1992;). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces sp.. Gene 116:, 43–49. [CrossRef][PubMed]
    [Google Scholar]
  7. Chater K. F., Chandra G.. ( 2008;). The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. . J Microbiol 46:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen-Roetling J., Sinanan J., Regan R. F.. ( 2012;). Effect of iron chelators on methemoglobin and thrombin preconditioning. . Translational Stroke Res 3:, 452–459. [CrossRef][PubMed]
    [Google Scholar]
  9. Cundliffe E.. ( 2008;). Control of tylosin biosynthesis in Streptomyces fradiae. . J Microbiol Biotechnol 18:, 1485–1491.[PubMed]
    [Google Scholar]
  10. Deng W., Li C., Xie J.. ( 2013;). The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. . Cell Signal 25:, 1608–1613. [CrossRef][PubMed]
    [Google Scholar]
  11. Fernández E., Weissbach U., Sánchez Reillo C., Braña A. F., Méndez C., Rohr J., Salas J. A.. ( 1998;). Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. . J Bacteriol 180:, 4929–4937.[PubMed]
    [Google Scholar]
  12. Flores F. J., Martín J. F.. ( 2004;). Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. . Biochem J 380:, 497–503. [CrossRef][PubMed]
    [Google Scholar]
  13. Flores F. J., Barreiro C., Coque J. J. R., Martín J. F.. ( 2005;). Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. . FEBS J 272:, 725–735. [CrossRef][PubMed]
    [Google Scholar]
  14. Funk A., Divekar P. V.. ( 1959;). Caerulomycin, a new antibiotic from Streptomyces caeruleus Baldacci. I. Production, isolation, assay, and biological properties. . Can J Microbiol 5:, 317–321. [CrossRef][PubMed]
    [Google Scholar]
  15. García I., Vior N. M., Braña A. F., González-Sabin J., Rohr J., Moris F., Méndez C., Salas J. A.. ( 2012;). Elucidating the biosynthetic pathway for the polyketide-nonribosomal peptide collismycin A: mechanism for formation of the 2,2′-bipyridyl ring. . Chem Biol 19:, 399–413. [CrossRef][PubMed]
    [Google Scholar]
  16. García I., Vior N. M., González-Sabín J., Braña A. F., Rohr J., Moris F., Méndez C., Salas J. A.. ( 2013;). Engineering the biosynthesis of the polyketide-nonribosomal peptide collismycin A for generation of analogs with neuroprotective activity. . Chem Biol 20:, 1022–1032. [CrossRef][PubMed]
    [Google Scholar]
  17. Gómez C., Horna D. H., Olano C., Palomino-Schätzlein M., Pineda-Lucena A., Carbajo R. J., Braña A. F., Méndez C., Salas J. A.. ( 2011;). Amino acid precursor supply in the biosynthesis of the RNA polymerase inhibitor streptolydigin by Streptomyces lydicus. . J Bacteriol 193:, 4214–4223. [CrossRef][PubMed]
    [Google Scholar]
  18. Gómez C., Olano C., Méndez C., Salas J. A.. ( 2012;). Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. . Microbiology 158:, 2504–2514. [CrossRef][PubMed]
    [Google Scholar]
  19. Gomi S., Amano S., Sato E., Miyadoh S., Kodama Y.. ( 1994;). Novel antibiotics SF2738A, B and C, and their analogs produced by Streptomyces sp.. J Antibiot (Tokyo) 47:, 1385–1394. [CrossRef][PubMed]
    [Google Scholar]
  20. Kieser T., Bibb M., Chater K., Butter M., Hopwood D.. ( 2000;). Practical Streptomyces Genetics: a Laboratory Manual. Norwich, UK:: John Innes Foundation;.
    [Google Scholar]
  21. Li Q., Wang X., Bartlett R., Pinay G., Kan D., Zhang W., Sun J.. ( 2012;). Ferrous iron phosphorus in sediments: development of a quantification method through 2,2′-bipyridine extraction. . Water Environ Res 84:, 2037–2044. [CrossRef][PubMed]
    [Google Scholar]
  22. Liu G., Chater K. F., Chandra G., Niu G., Tan H.. ( 2013;). Molecular regulation of antibiotic biosynthesis in Streptomyces. . Microbiol Mol Biol Rev 77:, 112–143. [CrossRef][PubMed]
    [Google Scholar]
  23. Locher K. P.. ( 2009;). Structure and mechanism of ATP-binding cassette transporters. . Phil Trans R Soc B 364:, 239–245. [CrossRef][PubMed]
    [Google Scholar]
  24. Martinez Gil A., Egea P. U., Medina Padilla M., García Palomero E., Pérez Baz J., Fernández Chimeno R. I., Medarde Fernández A., Canedo Hernández L. M., Romero Millán F.. & other authors ( 2008;). Use of collismycin and derivatives thereof as oxidative stress inhibitors. . US Patent WO2007/017146.
  25. McInnes A. G., Smith D. G., Wright J. L. C., Vining L. C.. ( 1977;). Caerulomycins B and C, new 2,2′-dipyridyl derivatives from Streptomyces caeruleus. . Can J Chem 55:, 4159–4165. [CrossRef]
    [Google Scholar]
  26. McInnes A. G., Smith D. G., Walter J. A., Wright J. L. C., Vining L. C., Arsenault G. P.. ( 1978;). Caerulomycin D, a novel glycosidic derivative of 3,4-dihydroxy-2,2′-dipyridyl 6-aldoxime from Streptomyces caeruleus. . Can J Chem 56:, 1836–1842. [CrossRef]
    [Google Scholar]
  27. Miethke M., Marahiel M. A.. ( 2007;). Siderophore-based iron acquisition and pathogen control. . Microbiol Mol Biol Rev 71:, 413–451. [CrossRef][PubMed]
    [Google Scholar]
  28. Nakouti I., Sihanonth P., Hobbs G.. ( 2012;). A new approach to isolating siderophore-producing actinobacteria. . Lett Appl Microbiol 55:, 68–72. [CrossRef][PubMed]
    [Google Scholar]
  29. Nett M., Ikeda H., Moore B. S.. ( 2009;). Genomic basis for natural product biosynthetic diversity in the actinomycetes. . Nat Prod Rep 26:, 1362–1384. [CrossRef][PubMed]
    [Google Scholar]
  30. Nocentini G., Barzi A.. ( 1996;). The 2,2′-bipyridyl-6-carbothioamide copper (II) complex differs from the iron (II) complex in its biochemical effects in tumor cells, suggesting possible differences in the mechanism leading to cytotoxicity. . Biochem Pharmacol 52:, 65–71. [CrossRef][PubMed]
    [Google Scholar]
  31. Nocentini G., Barzi A.. ( 1997;). Antitumor activity of 2,2′-bipyridyl-6-carbothioamide: a ribonucleotide reductase inhibitor. . Gen Pharmacol 29:, 701–706. [CrossRef][PubMed]
    [Google Scholar]
  32. Olano C., Méndez C., Salas J. A.. ( 2011;). Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. . Microb Biotechnol 4:, 144–164. [CrossRef][PubMed]
    [Google Scholar]
  33. Oldham M. L., Davidson A. L., Chen J.. ( 2008;). Structural insights into ABC transporter mechanism. . Curr Opin Struct Biol 18:, 726–733. [CrossRef][PubMed]
    [Google Scholar]
  34. Peláez A., Ribas-Aparicio R., Gómez A., Rodicio M.. ( 2001;). Structural and functional characterization of the recR gene of Streptomyces. . Mol Genet Genomics 265:, 663–672. [CrossRef][PubMed]
    [Google Scholar]
  35. Qu X., Pang B., Zhang Z., Chen M., Wu Z., Zhao Q., Zhang Q., Wang Y., Liu Y., Liu W.. ( 2012;). Caerulomycins and collismycins share a common paradigm for 2,2′-bipyridine biosynthesis via an unusual hybrid polyketide-peptide assembly logic. . J Am Chem Soc 134:, 9038–9041. [CrossRef][PubMed]
    [Google Scholar]
  36. Quirós L. M., Aguirrezabalaga I., Olano C., Méndez C., Salas J. A.. ( 1998;). Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. . Mol Microbiol 28:, 1177–1185. [CrossRef][PubMed]
    [Google Scholar]
  37. Ramos J. L., Martínez-Bueno M., Molina-Henares A. J., Terán W., Watanabe K., Zhang X., Gallegos M. T., Brennan R., Tobes R.. ( 2005;). The TetR family of transcriptional repressors. . Microbiol Mol Biol Rev 69:, 326–356. [CrossRef][PubMed]
    [Google Scholar]
  38. Rodríguez M., Núñez L. E., Braña A. F., Méndez C., Salas J. A., Blanco G.. ( 2008;). Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. . Mol Microbiol 69:, 633–645. [CrossRef][PubMed]
    [Google Scholar]
  39. Salerno P., Marineo S., Puglia A. M.. ( 2007;). The Streptomyces coelicolor dnaK operon contains a second promoter driving the expression of the negative regulator hspR at physiological temperature. . Arch Microbiol 188:, 541–546. [CrossRef][PubMed]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  41. Seipke R. F., Song L., Bicz J., Laskaris P., Yaxley A. M., Challis G. L., Loria R.. ( 2011;). The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. . Microbiology 157:, 2681–2693. [CrossRef][PubMed]
    [Google Scholar]
  42. Shindo K., Yamagishi Y., Okada Y., Kawai H.. ( 1994;). Collismycins A and B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding. . J Antibiot (Tokyo) 47:, 1072–1074. [CrossRef][PubMed]
    [Google Scholar]
  43. Sialer C., García I., González-Sabín J., Braña A. F., Méndez C., Morís F., Salas J. A.. ( 2013;). Generation by mutasynthesis of potential neuroprotectant derivatives of the bipyridyl collismycin A. . Bioorg Med Chem Lett 23:, 5707–5709. [CrossRef][PubMed]
    [Google Scholar]
  44. Siebenberg S., Bapat P. M., Lantz A. E., Gust B., Heide L.. ( 2010;). Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates. . J Biosci Bioeng 109:, 230–234. [CrossRef][PubMed]
    [Google Scholar]
  45. Stadler M., Bauch F., Henkel T., Mühlbauer A., Müller H., Spaltmann F., Weber K.. ( 2001;). Antifungal actinomycete metabolites discovered in a differential cell-based screening using a recombinant TOPO1 deletion mutant strain. . Arch Pharm (Weinheim) 334:, 143–147. [CrossRef][PubMed]
    [Google Scholar]
  46. Stephens D. L., Choe M. D., Earhart C. F.. ( 1995;). Escherichia coli periplasmic protein FepB binds ferrienterobactin. . Microbiology 141:, 1647–1654. [CrossRef][PubMed]
    [Google Scholar]
  47. Sun Y., He X., Liang J., Zhou X., Deng Z.. ( 2009;). Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. . Appl Microbiol Biotechnol 82:, 303–310. [CrossRef][PubMed]
    [Google Scholar]
  48. Tsuge N., Furihata K., Shin-Ya K., Hayakawa Y., Seto H.. ( 1999;). Novel antibiotics pyrisulfoxin A and B produced by Streptomyces californicus. . J Antibiot (Tokyo) 52:, 505–507. [CrossRef][PubMed]
    [Google Scholar]
  49. Vasanthakumar A., Kattusamy K., Prasad R.. ( 2013;). Regulation of daunorubicin biosynthesis in Streptomyces peucetius – feed forward and feedback transcriptional control. . J Basic Microbiol 53:, 636–644. [CrossRef][PubMed]
    [Google Scholar]
  50. Yang H., An Y., Wang L., Zhang S., Zhang Y., Tian Y., Liu G., Tan H.. ( 2010;). Autoregulation of hpdR and its effect on CDA biosynthesis in Streptomyces coelicolor. . Microbiology 156:, 2641–2648. [CrossRef][PubMed]
    [Google Scholar]
  51. Zhu Y., Fu P., Lin Q., Zhang G., Zhang H., Li S., Ju J., Zhu W., Zhang C.. ( 2012;). Identification of caerulomycin A gene cluster implicates a tailoring amidohydrolase. . Org Lett 14:, 2666–2669. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075218-0
Loading
/content/journal/micro/10.1099/mic.0.075218-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error