1887

Abstract

Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in . RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075192-0
2014-05-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/992.html?itemId=/content/journal/micro/10.1099/mic.0.075192-0&mimeType=html&fmt=ahah

References

  1. Anders S., Huber W.. ( 2010;). Differential expression analysis for sequence count data. Genome Biol11:R106 [CrossRef][PubMed]
    [Google Scholar]
  2. Beauchamp C., Fridovich I.. ( 1971;). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem44:276–287 [CrossRef][PubMed]
    [Google Scholar]
  3. Behrenfeld M. J., Bale A. J., Kolber Z. S., Aiken J., Falkowski P. G.. ( 1996;). Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature383:508–511 [CrossRef]
    [Google Scholar]
  4. Benešová J., Ničková K., Ferimazova N., Štys D.. ( 2000;). Morphological and physiological differences in Synechococcus elongatus during continuous cultivation at high iron, low iron, and iron deficient medium. Photosynthetica38:233–241 [CrossRef]
    [Google Scholar]
  5. Bhaya D., Schwarz R., Grossman A. R.. ( 2000;). Molecular responses to environmental stresses. Ecology of Cyanobacteria: Their Diversity in Time and Space397–442 Whitton B. A., Potts M.. Dordrecht: Kluwer;
    [Google Scholar]
  6. Boekema E. J., Hifney A., Yakushevska A. E., Piotrowski M., Keegstra W., Berry S., Michel K. P., Pistorius E. K., Kruip J.. ( 2001;). A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature412:745–748 [CrossRef][PubMed]
    [Google Scholar]
  7. Bordowitz J. R., Montgomery B. L.. ( 2008;). Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon . J Bacteriol190:4069–4074 [CrossRef][PubMed]
    [Google Scholar]
  8. Bordowitz J. R., Montgomery B. L.. ( 2010;). Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells. Sensors (Basel)10:6969–6979 [CrossRef][PubMed]
    [Google Scholar]
  9. Bordowitz J. R., Whitaker M. J., Montgomery B. L.. ( 2010;). Independence and interdependence of the photoregulation of pigmentation and development in Fremyella diplosiphon . Commun Integr Biol3:151–153 [CrossRef][PubMed]
    [Google Scholar]
  10. Campbell D.. ( 1996;). Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix . Microbiology142:1255–1263 [CrossRef][PubMed]
    [Google Scholar]
  11. Castagna A., Donnini S., Ranieri A.. ( 2009;). Adaptation to iron-deficiency requires remodelling of plant metabolism: an insight in chloroplast biochemistry and functionality. Salinity and Water Stress205–212 Ashraf M., Ozturk M., Athar H. R.. Dordrecht: Springer; [CrossRef]
    [Google Scholar]
  12. Cobley J. G., Zerweck E., Reyes R., Mody A., Seludo-Unson J. R., Jaeger H., Weerasuriya S., Navankasattusas S.. ( 1993;). Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon . Plasmid30:90–105 [CrossRef][PubMed]
    [Google Scholar]
  13. Connolly E. L., Guerinot M.. ( 2002;). Iron stress in plants. Genome Biol3:S1024 [CrossRef][PubMed]
    [Google Scholar]
  14. Dammeyer T., Frankenberg-Dinkel N.. ( 2008;). Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem Photobiol Sci7:1121–1130 [CrossRef][PubMed]
    [Google Scholar]
  15. de Silva D. M., Askwith C. C., Kaplan J.. ( 1996;). Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev76:31–47[PubMed]
    [Google Scholar]
  16. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L.. ( 2007;). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  17. Ekman M., Sandh G., Nenninger A., Oliveira P., Stensjö K.. ( 2014;). Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme. . Environ Microbiol16:829–844 [CrossRef][PubMed]
    [Google Scholar]
  18. Ferreira F., Straus N. A.. ( 1994;). Iron deprivation in cyanobacteria. J Appl Phycol6:199–210 [CrossRef]
    [Google Scholar]
  19. Fraser J. M., Tulk S. E., Jeans J. A., Campbell D. A., Bibby T. S., Cockshutt A. M.. ( 2013;). Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS ONE8:e59861 [CrossRef][PubMed]
    [Google Scholar]
  20. Gutu A., Kehoe D. M.. ( 2012;). Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol Plant5:1–13 [CrossRef][PubMed]
    [Google Scholar]
  21. Hantke K.. ( 2001;). Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177 [CrossRef][PubMed]
    [Google Scholar]
  22. Hardie L. P., Balkwill D. L., Stevens S. E. Jr. ( 1983a;). Effects of iron starvation on the physiology of the cyanobacterium Agmenellum quadruplicatum . Appl Environ Microbiol45:999–1006[PubMed]
    [Google Scholar]
  23. Hardie L. P., Balkwill D. L., Stevens S. E. Jr. ( 1983b;). Effects of iron starvation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum . Appl Environ Microbiol45:1007–1017[PubMed]
    [Google Scholar]
  24. He Y. Y., Häder D. P.. ( 2002;). Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. J Photochem Photobiol B66:73–80 [CrossRef][PubMed]
    [Google Scholar]
  25. Kahn K., Mazel D., Houmard J., Tandeau de Marsac N., Schaefer M. R.. ( 1997;). A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol179:998–1006[PubMed]
    [Google Scholar]
  26. Kehoe D. M., Grossman A. R.. ( 1996;). Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science273:1409–1412 [CrossRef][PubMed]
    [Google Scholar]
  27. Kehoe D. M., Grossman A. R.. ( 1997;). New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol179:3914–3921[PubMed]
    [Google Scholar]
  28. Kehoe D. M., Gutu A.. ( 2006;). Responding to color: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol57:127–150 [CrossRef][PubMed]
    [Google Scholar]
  29. Keren N., Aurora R., Pakrasi H. B.. ( 2004;). Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol135:1666–1673 [CrossRef][PubMed]
    [Google Scholar]
  30. Küpper H., Setlík I., Seibert S., Prásil O., Šetlikova E., Strittmatter M., Levitan O., Lohscheider J., Adamska I., Berman-Frank I.. ( 2008;). Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol179:784–798 [CrossRef][PubMed]
    [Google Scholar]
  31. Langmead B., Trapnell C., Pop M., Salzberg S. L.. ( 2009;). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol10:R25 [CrossRef][PubMed]
    [Google Scholar]
  32. Latifi A., Jeanjean R., Lemeille S., Havaux M., Zhang C.-C.. ( 2005;). Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol187:6596–6598 [CrossRef][PubMed]
    [Google Scholar]
  33. Latifi A., Ruiz M., Zhang C. C.. ( 2009;). Oxidative stress in cyanobacteria. FEMS Microbiol Rev33:258–278 [CrossRef][PubMed]
    [Google Scholar]
  34. Lax J. E., Arteni A. A., Boekema E. J., Pistorius E. K., Michel K. P., Rögner M.. ( 2007;). Structural response of photosystem 2 to iron deficiency: characterization of a new photosystem 2-IdiA complex from the cyanobacterium Thermosynechococcus elongatus BP-1. Biochim Biophys Acta1767:528–534 [CrossRef][PubMed]
    [Google Scholar]
  35. Lemasson C., Marsac N. T., Cohen-Bazire G.. ( 1973;). Role of allophycocyanin as light-harvesting pigment in cyanobacteria. Proc Natl Acad Sci U S A70:3130–3133 [CrossRef][PubMed]
    [Google Scholar]
  36. Michel K. P., Pistorius E. K.. ( 2004;). Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Plant120:36–50 [CrossRef][PubMed]
    [Google Scholar]
  37. Montgomery B. L., Pattanaik B.. ( 2010;). Regulation during adaptation of cyanobacteria to changes in iron availability: a case study of responses to iron limitation in Fremyella diplosiphon . Biometals: Molecular Structures, Binding Properties and Applications (Biotechnology in Agriculture, Industry and Medicine)215–226 Blanc G., Moreau D.. Hauppauge, NY: Nova Science;
    [Google Scholar]
  38. Narayan O. P., Kumari N., Rai L. C.. ( 2011;). Iron starvation-induced proteomic changes in Anabaena (Nostoc) sp. PCC 7120: exploring survival strategy. J Microbiol Biotechnol21:136–146 [CrossRef][PubMed]
    [Google Scholar]
  39. Pattanaik B., Montgomery B. L.. ( 2010;). FdTonB is involved in the photoregulation of cellular morphology during complementary chromatic adaptation in Fremyella diplosiphon . Microbiology156:731–741 [CrossRef][PubMed]
    [Google Scholar]
  40. Rastogi R. P., Singh S. P., Häder D.-P., Sinha R. P.. ( 2010;). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun397:603–607 [CrossRef][PubMed]
    [Google Scholar]
  41. Regelsberger G., Laaha U., Dietmann D., Rüker F., Canini A., Grilli-Caiola M., Furtmüller P. G., Jakopitsch C., Peschek G. A., Obinger C.. ( 2004;). The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization. J Biol Chem279:44384–44393 [CrossRef][PubMed]
    [Google Scholar]
  42. Sandström S., Ivanov A. G., Park Y. I., Öquist G., Gustafsson P.. ( 2002;). Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol Plant116:255–263 [CrossRef][PubMed]
    [Google Scholar]
  43. Shcolnick S., Keren N.. ( 2006;). Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol141:805–810 [CrossRef][PubMed]
    [Google Scholar]
  44. Sherman D. M., Sherman L. A.. ( 1983;). Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans . J Bacteriol156:393–401[PubMed]
    [Google Scholar]
  45. Singh S. P., Montgomery B. L.. ( 2011;). Temporal responses of wild-type pigmentation and RcaE-deficient strains of Fremyella diplosiphon during light transitions. Commun Integr Biol4:503–510[PubMed][CrossRef]
    [Google Scholar]
  46. Singh S. P., Montgomery B. L.. ( 2012;). Reactive oxygen species are involved in the morphology-determining mechanism of Fremyella diplosiphon cells during complementary chromatic adaptation. Microbiology158:2235–2245 [CrossRef][PubMed]
    [Google Scholar]
  47. Singh S. P., Montgomery B. L.. ( 2013;). Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape. Plant Signal Behav8:e24713 [CrossRef][PubMed]
    [Google Scholar]
  48. Sterner R. W., Smutka T. M., McKay R. M. L., Xiaoming Q., Brown E. T., Sherrell R. M.. ( 2004;). Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr49:495–507 [CrossRef]
    [Google Scholar]
  49. Stowe-Evans E. L., Ford J., Kehoe D. M.. ( 2004;). Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon . J Bacteriol186:4338–4349 [CrossRef][PubMed]
    [Google Scholar]
  50. Straus N. A.. ( 1994;). Iron deprivation: physiology and gene regulation. The Molecular Biology of Cyanobacteria (Advances in Photosynthesis and Respiration)vol. 1731–750 Bryant D. A.. Dordrecht: Kluwer; [CrossRef]
    [Google Scholar]
  51. Tandeau de Marsac N.. ( 1977;). Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol130:82–91[PubMed]
    [Google Scholar]
  52. Tandeau de Marsac N., Houmard J.. ( 1988;). Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol167:318–328 [CrossRef]
    [Google Scholar]
  53. Terry M. J., Linley P. J., Kohchi T.. ( 2002;). Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans30:604–609 [CrossRef][PubMed]
    [Google Scholar]
  54. Thompson A. W., Huang K., Saito M. A., Chisholm S. W.. ( 2011;). Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J5:1580–1594 [CrossRef][PubMed]
    [Google Scholar]
  55. Twiss M. R., Auclair J.-C., Charlton M. N.. ( 2000;). An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can J Fish Aquat Sci57:86–95 [CrossRef]
    [Google Scholar]
  56. Walker E. L., Connolly E. L.. ( 2008;). Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol11:530–535 [CrossRef][PubMed]
    [Google Scholar]
  57. Xing W., Huang W. M., Li D. H., Liu Y. D.. ( 2007;). Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii . Curr Microbiol55:94–98 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075192-0
Loading
/content/journal/micro/10.1099/mic.0.075192-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error