1887

Abstract

So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium ‘ Contubernalis alkalaceticum’ and its hydrogenotrophic sulfate-reducing partner . Anaerobic enrichments at pH 10 inoculated with sediments from hypersaline soda lakes of the Kulunda Steppe (Altai, Russia) demonstrated the possibility of sulfate-dependent acetate oxidation at much higher salt concentrations (up to 3.5 M total Na). The most salt-tolerant purified cultures contained two major components apparently working in syntrophy. The primary acetate-fermenting component was identified as a member of the order forming, together with ‘ Contubernalis alkalaceticum’, an independent branch within the family . A provisional name, ‘ Syntrophonatronum acetioxidans’, is suggested for the novel haloalkaliphilic clostridium. Two phylotypes of extremely haloalkaliphilic sulfate-reducing bacteria of the genus were identified as sulfate-reducing partners in the acetate-oxidizing cultures under extreme salinity. The dominant phylotype differed from the two species of described so far, whilst a minor component belonged to . The results proved that, contrary to previous beliefs, sulfate-dependent acetate oxidation is possible, albeit very slowly, in nearly saturated soda brines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075093-0
2014-04-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/723.html?itemId=/content/journal/micro/10.1099/mic.0.075093-0&mimeType=html&fmt=ahah

References

  1. Brown S. D., Begemann M. B., Mormile M. R., Wall J. D., Han C. S., Goodwin L. A., Pitluck S., Land M. L., Hauser L. J., Elias D. A.. ( 2011;). Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogenoformans. . J Bacteriol 193:, 3682–3683. [CrossRef][PubMed]
    [Google Scholar]
  2. Geets J., Borremans B., Diels L., Springael D., Vangronsveld J., van der Lelie D., Vanbroekhoven K.. ( 2006;). DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. . J Microbiol Methods 66:, 194–205. [CrossRef][PubMed]
    [Google Scholar]
  3. Gorlenko V. M., Namsaraev B. B., Kulyrova A. V., Zavarzina D. G., Zhilina T. N.. ( 1999;). Activity of sulfate-reducing bacteria in the sediments of the soda lakes in south-east Transbaikal area. . Microbiology (English translation of Mikrobiologiia) 68:, 580–586.
    [Google Scholar]
  4. Kevbrin V. V., Zhilina T. N., Zavarzin G. A.. ( 1999;). Decomposition of cellulose by the anaerobic alkaliphilic microbial community. . Microbiology (English translation of Mikrobiologiia) 68:, 601–609.
    [Google Scholar]
  5. Kulp T. R., Hoeft S. E., Miller L. G., Saltikov C., Murphy J. N., Han S., Lanoil B., Oremland R. S.. ( 2006;). Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. . Appl Environ Microbiol 72:, 6514–6526. [CrossRef][PubMed]
    [Google Scholar]
  6. Kulp T. R., Han S., Saltikov C. W., Lanoil B. D., Zargar K., Oremland R. S.. ( 2007;). Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. . Appl Environ Microbiol 73:, 5130–5137. [CrossRef][PubMed]
    [Google Scholar]
  7. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–177. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  8. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. ( 1951;). Protein measurement with the Folin phenol reagent. . J Biol Chem 193:, 265–275.[PubMed]
    [Google Scholar]
  9. Loy A., Duller S., Baranyi C., Mussmann M., Ott J., Sharon I., Béjà O., Le Paslier D., Dahl C., Wagner M.. ( 2009;). Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. . Environ Microbiol 11:, 289–299. [CrossRef][PubMed]
    [Google Scholar]
  10. McInerney M. J., Struchtemeyer C. G., Sieber J., Mouttaki H., Stams A. J. M., Schink B., Rohlin L., Gunsalus R. P.. ( 2008;). Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. . Ann N Y Acad Sci 1125:, 58–72. [CrossRef][PubMed]
    [Google Scholar]
  11. Oren A.. ( 2011;). Thermodynamic limits to microbial life at high salt concentrations. . Environ Microbiol 13:, 1908–1923. [CrossRef][PubMed]
    [Google Scholar]
  12. Pfennig N., Lippert K. D.. ( 1966;). Über das Vitamin B12 – bedürfnis phototropher Schwefel bacterien. . Arch Mikrobiol 55:, 245–256. [CrossRef]
    [Google Scholar]
  13. Pikuta E. V., Zhilina T. N., Zavarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A.. ( 1998;). Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. . Microbiology (English translation of Mikrobiologiia) 67:, 105–113.
    [Google Scholar]
  14. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P.. ( 2003;). Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. . Int J Syst Evol Microbiol 53:, 1327–1332. [CrossRef][PubMed]
    [Google Scholar]
  15. Plugge C. M.. ( 2005;). Anoxic media design, preparation, and considerations. . Methods Enzymol 397:, 3–16. [CrossRef][PubMed]
    [Google Scholar]
  16. Schäfer H., Muyzer G.. ( 2001;). Denaturing gradient gel electrophoresis in marine microbial ecology. . Methods Microbiol 30:, 425–468. [CrossRef]
    [Google Scholar]
  17. Schink B., Stams A. J. M.. ( 2006;). Syntrophism among Prokaryotes. . In The Prokaryotes, , 3nd edn., vol. 2, pp. 309–335. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  18. Sorokin D. Y., Muyzer G.. ( 2010;). Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. . Extremophiles 14:, 349–355. [CrossRef][PubMed]
    [Google Scholar]
  19. Sorokin D. Y., Gorlenko V. M., Namsaraev B. B., Namsaraev Z. B., Lysenko A. M., Eshinimaev B. T., Khmelenina V. N., Trotsenko Y. A., Kuenen J. G.. ( 2004;). Prokaryotic communities of the north-eastern Mongolian soda lakes. . Hydrobiologia 522:, 235–248. [CrossRef]
    [Google Scholar]
  20. Sorokin D. Y., Tourova T. P., Henstra A. M., Stams A. J. M., Galinski E. A., Muyzer G.. ( 2008;). Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. . Microbiology 154:, 1444–1453. [CrossRef][PubMed]
    [Google Scholar]
  21. Sorokin D. Y., Rusanov I. I., Pimenov N. V., Tourova T. P., Abbas B., Muyzer G.. ( 2010a;). Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). . FEMS Microbiol Ecol 73:, 278–290.[PubMed]
    [Google Scholar]
  22. Sorokin D. Y., Detkova E. N., Muyzer G.. ( 2010b;). Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov.. Extremophiles 14:, 71–77. [CrossRef][PubMed]
    [Google Scholar]
  23. Sorokin D. Y., Kuenen J. G., Muyzer G.. ( 2011a;). The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. . Front Microbiol 2:, 44. [CrossRef][PubMed]
    [Google Scholar]
  24. Sorokin D. Y., Tourova T. P., Kolganova T. V., Detkova E. N., Galinski E. A., Muyzer G.. ( 2011b;). Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov.. Extremophiles 15:, 391–401. [CrossRef][PubMed]
    [Google Scholar]
  25. Sorokin D. Y., Panteleeva A. N., Tourova T. P., Muyzer G.. ( 2012;). Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lake. . Int J Syst Evol Microbiol 62:, 2107–2113. [CrossRef][PubMed]
    [Google Scholar]
  26. Stams A. J. M., Plugge C. M.. ( 2009;). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. . Nat Rev Microbiol 7:, 568–577. [CrossRef][PubMed]
    [Google Scholar]
  27. Trüper H. G., Schlegel H. G.. ( 1964;). Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. . Antonie van Leeuwenhoek 30:, 225–238. [CrossRef][PubMed]
    [Google Scholar]
  28. Wagner M., Roger A. J., Flax J. L., Brusseau G. A., Stahl D. A.. ( 1998;). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. . J Bacteriol 180:, 2975–2982.[PubMed]
    [Google Scholar]
  29. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A.. ( 1997;). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. . Int J Syst Bacteriol 47:, 144–149. [CrossRef][PubMed]
    [Google Scholar]
  30. Zhilina T. N., Zavarzina D. G., Kuever J., Lysenko A. M., Zavarzin G. A.. ( 2005a;). Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. . Int J Syst Evol Microbiol 55:, 1001–1006. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhilina T. N., Zavarzina D. G., Kolganova T. V., Turova T. P., Zavarzin G. A.. ( 2005b;). [“Candidatus Contubernalis alkalaceticum”, an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum.]. Mikrobiologiia 74:, 800–809 (in Russian).[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075093-0
Loading
/content/journal/micro/10.1099/mic.0.075093-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error