1887

Abstract

The chromate ion transporter (CHR) superfamily comprises transporters that confer chromate resistance by extruding toxic chromate ions from cytoplasm. strain LB400 has been reported to encode six CHR homologues in its multireplicon genome. We found that strain LB400 displays chromate-inducible resistance to chromate. Susceptibility tests of strains transformed with cloned genes indicated that the six genes confer chromate resistance, although under different growth conditions, and suggested that expression of genes is regulated by sulfate. Expression of genes was measured by quantitative reverse transcription-PCR (RT-qPCR) from total RNA of LB400 grown under different concentrations of sulfate and exposed or not to chromate. The homologues displayed distinct expression levels, but showed no significant differences in transcription under the various sulfate concentrations tested, indicating that sulfate does not regulate gene expression in . The gene, encoded in the megaplasmid, was the only gene whose expression was induced by chromate and it was shown to constitute the chromate-responsive operon. These data suggest that this determinant is mainly responsible for the LB400 chromate resistance phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073783-0
2014-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/287.html?itemId=/content/journal/micro/10.1099/mic.0.073783-0&mimeType=html&fmt=ahah

References

  1. Aguilar-Barajas E., Paluscio E., Cervantes C., Rensing C.. ( 2008;). Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. . FEMS Microbiol Lett 285:, 97–100. [CrossRef][PubMed]
    [Google Scholar]
  2. Aguilar-Barajas E., Jerónimo-Rodríguez P., Ramírez-Díaz M. I., Rensing C., Cervantes C.. ( 2012;). The ChrA homologue from a sulfur-regulated gene cluster in cyanobacterial plasmid pANL confers chromate resistance. . World J Microbiol Biotechnol 28:, 865–869. [CrossRef][PubMed]
    [Google Scholar]
  3. Alvarez A. H., Moreno-Sánchez R., Cervantes C.. ( 1999;). Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. . J Bacteriol 181:, 7398–7400.[PubMed]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1995;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  5. Branco R., Chung A. P., Johnston T., Gurel V., Morais P., Zhitkovich A.. ( 2008;). The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. . J Bacteriol 190:, 6996–7003. [CrossRef][PubMed]
    [Google Scholar]
  6. Cervantes C., Ohtake H., Chu L., Misra T. K., Silver S.. ( 1990;). Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. . J Bacteriol 172:, 287–291.[PubMed]
    [Google Scholar]
  7. Cervantes C., Campos-García J., Devars S., Gutiérrez-Corona F., Loza-Tavera H., Torres-Guzmán J. C., Moreno-Sánchez R.. ( 2001;). Interactions of chromium with microorganisms and plants. . FEMS Microbiol Rev 25:, 335–347. [CrossRef][PubMed]
    [Google Scholar]
  8. Chain P. S. G., Denef V. J., Konstantinidis K. T., Vergez L. M., Agulló L., Reyes V. L., Hauser L., Córdova M., Gómez L.. & other authors ( 2006;). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. . Proc Natl Acad Sci U S A 103:, 15280–15287. [CrossRef][PubMed]
    [Google Scholar]
  9. Denef V. J., Park J., Tsoi T. V., Rouillard J.-M., Zhang H., Wibbenmeyer J. A., Verstraete W., Gulari E., Hashsham S. A., Tiedje J. M.. ( 2004;). Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. . Appl Environ Microbiol 70:, 4961–4970. [CrossRef][PubMed]
    [Google Scholar]
  10. Denef V. J., Patrauchan M. A., Florizone C., Park J., Tsoi T. V., Verstraete W., Tiedje J. M., Eltis L. D.. ( 2005;). Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. . J Bacteriol 187:, 7996–8005. [CrossRef][PubMed]
    [Google Scholar]
  11. Díaz-Magaña A., Aguilar-Barajas E., Moreno-Sánchez R., Ramírez-Díaz M. I., Riveros-Rosas H., Vargas E., Cervantes C.. ( 2009;). Short-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli. . J Bacteriol 191:, 5441–5445. [CrossRef][PubMed]
    [Google Scholar]
  12. Díaz-Pérez C., Cervantes C., Campos-García J., Julián-Sánchez A., Riveros-Rosas H.. ( 2007;). Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. . FEBS J 274:, 6215–6227. [CrossRef][PubMed]
    [Google Scholar]
  13. Goris J., De Vos P., Caballero-Mellado J., Park J., Falsen E., Quensen J. F. III, Tiedje J. M., Vandamme P.. ( 2004;). Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400 and relatives as Burkholderia xenovorans sp. nov. . Int J Syst Evol Microbiol 54:, 1677–1681. [CrossRef][PubMed]
    [Google Scholar]
  14. Gu Z., Steinmetz L. M., Gu X., Scharfe C., Davis R. W., Li W. H.. ( 2003;). Role of duplicate genes in genetic robustness against null mutations. . Nature 421:, 63–66. [CrossRef][PubMed]
    [Google Scholar]
  15. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B. L.. & other authors ( 2006;). Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. . Mol Syst Biol 2:, 0007. [CrossRef][PubMed]
    [Google Scholar]
  16. Henne K. L., Nakatsu C. H., Thompson D. K., Konopka A. E.. ( 2009;). High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. . BMC Microbiol 9:, 199. [CrossRef][PubMed]
    [Google Scholar]
  17. Holloway B. W., Krishnapillai V., Morgan A. F.. ( 1979;). Chromosomal genetics of Pseudomonas. . Microbiol Rev 43:, 73–102.[PubMed]
    [Google Scholar]
  18. Jordan I. K., Makarova K. S., Spouge J. L., Wolf Y. I., Koonin E. V.. ( 2001;). Lineage-specific gene expansions in bacterial and archaeal genomes. . Genome Res 11:, 555–565. [CrossRef][PubMed]
    [Google Scholar]
  19. Juhnke S., Peitzsch N., Hübener N., Große C., Nies D. H.. ( 2002;). New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. . Arch Microbiol 179:, 15–25. [CrossRef][PubMed]
    [Google Scholar]
  20. Kobayashi A., Hirakawa H., Hirata T., Nishino K., Yamaguchi A.. ( 2006;). Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. . J Bacteriol 188:, 5693–5703. [CrossRef][PubMed]
    [Google Scholar]
  21. Lessie T. G., Hendrickson W., Manning B. D., Devereux R.. ( 1996;). Genomic complexity and plasticity of Burkholderia cepacia. . FEMS Microbiol Lett 144:, 117–128. [CrossRef][PubMed]
    [Google Scholar]
  22. Martínez-Aguilar L., Díaz R., Peña-Cabriales J. J., Estrada-de Los Santos P., Dunn M. F., Caballero-Mellado J.. ( 2008;). Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. . Appl Environ Microbiol 74:, 4574–4579. [CrossRef][PubMed]
    [Google Scholar]
  23. Martínez-Valencia R., Reyes-Cortés G., Ramírez-Díaz M. I., Riveros-Rosas H., Cervantes C.. ( 2012;). Antiparallel membrane topology of paired short-chain chromate ion transporters in Bacillus subtilis. . FEMS Microbiol Lett 336:, 113–121. [CrossRef][PubMed]
    [Google Scholar]
  24. Moraleda-Muñoz A., Pérez J., Extremera A. L., Muñoz-Dorado J.. ( 2010;). Differential regulation of six heavy metal efflux systems in the response of Myxococcus xanthus to copper. . Appl Environ Microbiol 76:, 6069–6076. [CrossRef][PubMed]
    [Google Scholar]
  25. Nies D. H.. ( 2003;). Efflux-mediated heavy metal resistance in prokaryotes. . FEMS Microbiol Rev 27:, 313–339. [CrossRef][PubMed]
    [Google Scholar]
  26. Nies D. H., Silver S.. ( 1989;). Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. . J Bacteriol 171:, 4073–4075.[PubMed]
    [Google Scholar]
  27. Nies A., Nies D. H., Silver S.. ( 1990;). Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. . J Biol Chem 265:, 5648–5653.[PubMed]
    [Google Scholar]
  28. Nies D. H., Rehbein G., Hoffmann T., Baumann C., Grosse C.. ( 2006;). Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. . J Mol Microbiol Biotechnol 11:, 82–93. [CrossRef][PubMed]
    [Google Scholar]
  29. Petrova M., Gorlenko Z., Mindlin S.. ( 2011;). Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. . Res Microbiol 162:, 337–345. [CrossRef][PubMed]
    [Google Scholar]
  30. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef][PubMed]
    [Google Scholar]
  31. Preston M. J., Seed P. C., Toder D. S., Iglewski B. H., Ohman D. E., Gustin J. K., Goldberg J. B., Pier G. B.. ( 1997;). Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. . Infect Immun 65:, 3086–3090.[PubMed]
    [Google Scholar]
  32. Ramírez-Díaz M. I., Díaz-Pérez C., Vargas E., Riveros-Rosas H., Campos-García J., Cervantes C.. ( 2008;). Mechanisms of bacterial resistance to chromium compounds. . Biometals 21:, 321–332. [CrossRef][PubMed]
    [Google Scholar]
  33. Reitzer L., Schneider B. L.. ( 2001;). Metabolic context and possible physiological themes of σ(54)-dependent genes in Escherichia coli. . Microbiol Mol Biol Rev 65:, 422–444. [CrossRef][PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: A Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  35. Sánchez-Perez G., Mira A., Nyiro G., Pasić L., Rodríguez-Valera F.. ( 2008;). Adapting to environmental changes using specialized paralogs. . Trends Genet 24:, 154–158. [CrossRef][PubMed]
    [Google Scholar]
  36. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J.. ( 1994;). Construction of improved Escherichia–Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. . Gene 148:, 81–86. [CrossRef][PubMed]
    [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J.. ( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. . Gene 33:, 103–119. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073783-0
Loading
/content/journal/micro/10.1099/mic.0.073783-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error