1887

Abstract

Cyanobacteria constitute a morphologically diverse group of oxygenic photoautotrophic microbes which range from unicellular to multicellular, and non-nitrogen-fixing to nitrogen-fixing types. Sustained long-term exposure to changing environmental conditions, during their three billion years of evolution, has presumably led to their adaptation to diverse ecological niches. The ability to maintain protein conformational homeostasis (folding–misfolding–refolding or aggregation–degradation) by molecular chaperones holds the key to the stress adaptability of cyanobacteria. Although cyanobacteria possess several genes encoding DnaK and DnaJ family proteins, these are not the most abundant heat-shock proteins (Hsps), as is the case in other bacteria. Instead, the Hsp60 family of proteins, comprising two phylogenetically conserved proteins, and small Hsps are more abundant during heat stress. The contribution of the Hsp100 (ClpB) family of proteins and of small Hsps in the unicellular cyanobacteria ( and ) as well as that of Hsp60 proteins in the filamentous cyanobacteria () to thermotolerance has been elucidated. The regulation of chaperone genes by several -elements and -acting factors has also been well documented. Recent studies have demonstrated novel transcriptional and translational (mRNA secondary structure) regulatory mechanisms in unicellular cyanobacteria. This article provides an insight into the heat-shock response: its organization, and ecophysiological regulation and role of molecular chaperones, in unicellular and filamentous nitrogen-fixing cyanobacterial strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073478-0
2014-04-01
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/647.html?itemId=/content/journal/micro/10.1099/mic.0.073478-0&mimeType=html&fmt=ahah

References

  1. Apte S. K. ( 2001). Coping with salinity/water stress: cyanobacteria show the way. Proc Indian Natl Acad Sci B67:285–310
    [Google Scholar]
  2. Apte S. K., Bhagwat A. A. ( 1989). Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt. J Bacteriol 171:909–915[PubMed]
    [Google Scholar]
  3. Apte S. K., Fernandes T., Badran H., Ballal A. ( 1998). Expression and possible role of stress-responsive proteins in Anabaena. J Biosci 23:399–406 [View Article]
    [Google Scholar]
  4. Asadulghani S., Suzuki Y., Nakamoto H. ( 2003). Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 306:872–879 [View Article][PubMed]
    [Google Scholar]
  5. Barthel S., Rupprecht E., Schneider D. ( 2011). Thermostability of two cyanobacterial GrpE thermosensors. Plant Cell Physiol 52:1776–1785 [View Article][PubMed]
    [Google Scholar]
  6. Basha E., Lee G. J., Breci L. A., Hausrath A. C., Buan N. R., Giese K. C., Vierling E. ( 2004). The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279:7566–7575 [View Article][PubMed]
    [Google Scholar]
  7. Beissinger M., Buchner J. ( 1998). How chaperones fold proteins. Biol Chem 379:245–259[PubMed]
    [Google Scholar]
  8. Bhagwat A. A., Apte S. K. ( 1989). Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. J Bacteriol 171:5187–5189[PubMed]
    [Google Scholar]
  9. Blondin P. A., Kirby R. J., Barnum S. R. ( 1993). The heat shock response and acquired thermotolerance in three strains of cyanobacteria. Curr Microbiol 26:79–84 [View Article]
    [Google Scholar]
  10. Bogumil D., Dagan T. ( 2012). Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51:9941–9953 [View Article][PubMed]
    [Google Scholar]
  11. Borbély G., Surányi G., Korcz A., Pálfi Z. ( 1985). Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bacteriol 161:1125–1130[PubMed]
    [Google Scholar]
  12. Brock T. D. ( 1973). Evolutionary and ecological aspects of cyanophytes. The Biology of Blue-Green Algae487–500 Carr N. G., Whitton B. A. Oxford: Blackwell;
    [Google Scholar]
  13. Caspers G. J., Leunissen J. A., de Jong W. W. ( 1995). The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol 40:238–248 [View Article][PubMed]
    [Google Scholar]
  14. Castielli O., De la Cerda B., Navarro J. A., Hervás M., De la Rosa M. A. ( 2009). Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Lett 583:1753–1758 [View Article][PubMed]
    [Google Scholar]
  15. Chaurasia A. K., Apte S. K. ( 2009). Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Appl Environ Microbiol 75:6008–6012 [View Article][PubMed]
    [Google Scholar]
  16. Chaurasia A. K., Apte S. K. ( 2011). Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol 77:395–399 [View Article][PubMed]
    [Google Scholar]
  17. Chaurasia A. K., Adhya T. K., Apte S. K. ( 2013). Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour Technol 149:439–445 [View Article][PubMed]
    [Google Scholar]
  18. Chisholm S. W., Olson R. J., Zettler E. R., Goericke R., Waterbury J. B., Welschmeyer N. A. ( 1988). A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343 [View Article]
    [Google Scholar]
  19. Chitnis P. R., Nelson N. ( 1991). Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266:58–65[PubMed]
    [Google Scholar]
  20. Clarke A. K., Eriksson M. J. ( 2000). The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 182:7092–7096 [View Article][PubMed]
    [Google Scholar]
  21. Düppre E., Rupprecht E., Schneider D. ( 2011). Specific and promiscuous functions of multiple DnaJ proteins in Synechocystis sp. PCC 6803. Microbiology 157:1269–1278 [View Article][PubMed]
    [Google Scholar]
  22. Eriksson M. J., Clarke A. K. ( 1996). The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 178:4839–4846[PubMed]
    [Google Scholar]
  23. Eriksson M. J., Schelin J., Miskiewicz E., Clarke A. K. ( 2001). Novel form of ClpB/HSP100 protein in the cyanobacterium Synechococcus. J Bacteriol 183:7392–7396 [View Article][PubMed]
    [Google Scholar]
  24. Fischer H. M., Babst M., Kaspar T., Acuña G., Arigoni F., Hennecke H. ( 1993). One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912[PubMed]
    [Google Scholar]
  25. Furuki M., Tanaka N., Hiyama T., Nakamoto H. ( 1996). Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294:106–110 [View Article][PubMed]
    [Google Scholar]
  26. Genevaux P., Georgopoulos C., Kelley W. L. ( 2007). The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66:840–857 [View Article][PubMed]
    [Google Scholar]
  27. Glatz A., Horváth I., Varvasovszki V., Kovács E., Török Z., Vigh L. ( 1997). Chaperonin genes of the Synechocystis PCC 6803 are differentially regulated under light–dark transition during heat stress. Biochem Biophys Res Commun 239:291–297 [View Article][PubMed]
    [Google Scholar]
  28. Glatz A., Vass I., Los D. A., Vigh L. ( 1999). The Synechocystis model of stress: from molecular chaperones to membranes. Plant Physiol Biochem 37:1–12 [View Article]
    [Google Scholar]
  29. Govezensky D., Greener T., Segal G., Zamir A. ( 1991). Involvement of GroEL in nif gene regulation and nitrogenase assembly. J Bacteriol 173:6339–6346[PubMed]
    [Google Scholar]
  30. Gunnelius L., Tuominen I., Rantamäki S., Pollari M., Ruotsalainen V., Tyystjärvi E., Tyystjärvi T. ( 2010). SigC sigma factor is involved in acclimation to low inorganic carbon at high temperature in Synechocystis sp. PCC 6803. Microbiology 156:220–229 [View Article][PubMed]
    [Google Scholar]
  31. Hall T. A. ( 1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  32. Horváth I., Glatz A., Varvasovszki V., Török Z., Páli T., Balogh G., Kovács E., Nádasdi L., Benkö S. & other authors ( 1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci U S A 95:3513–3518 [View Article][PubMed]
    [Google Scholar]
  33. Horváth I., Glatz A., Nakamoto H., Mishkind M. L., Munnik T., Saidi Y., Goloubinoff P., Harwood J. L., Vigh L. ( 2012). Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220 [View Article][PubMed]
    [Google Scholar]
  34. Horwich A. L., Farr G. W., Fenton W. A. ( 2006). GroEL-GroES-mediated protein folding. Chem Rev 106:1917–1930 [View Article][PubMed]
    [Google Scholar]
  35. Hossain M. M., Nakamoto H. ( 2002). HtpG plays a role in cold acclimation in cyanobacteria. Curr Microbiol 44:291–296 [View Article][PubMed]
    [Google Scholar]
  36. Hossain M. M., Nakamoto H. ( 2003). Role for the cyanobacterial HtpG in protection from oxidative stress. Curr Microbiol 46:70–76 [View Article][PubMed]
    [Google Scholar]
  37. Huq S., Sueoka K., Narumi S., Arisaka F., Nakamoto H. ( 2010). Comparative biochemical characterization of two GroEL homologs from the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 74:2273–2280 [View Article][PubMed]
    [Google Scholar]
  38. Imamura S., Yoshihara S., Nakano S., Shiozaki N., Yamada A., Tanaka K., Takahashi H., Asayama M., Shirai M. ( 2003). Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J Mol Biol 325:857–872 [View Article][PubMed]
    [Google Scholar]
  39. Jāger K. M., Bergman B. ( 1991). Localization of a multifunctional chaperonin (GroEL protein) in nitrogen-fixing Anabaena PCC 7120. Planta 183:120–125 [View Article][PubMed]
    [Google Scholar]
  40. Kaneko T., Nakamura Y., Wolk C. P., Kuritz T., Sasamoto S., Watanabe A., Iriguchi M., Ishikawa A., Kawashima K. & other authors ( 2001). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213 [View Article][PubMed]
    [Google Scholar]
  41. Kanemori M., Mori H., Yura T. ( 1994). Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of σ32 in Escherichia coli. J Bacteriol 176:5648–5653[PubMed]
    [Google Scholar]
  42. Katano Y., Nimura-Matsune K., Yoshikawa H. ( 2006). Involvement of DnaK3, one of the three DnaK proteins of cyanobacterium Synechococcus sp. PCC7942, in translational process on the surface of the thylakoid membrane. Biosci Biotechnol Biochem 70:1592–1598 [View Article][PubMed]
    [Google Scholar]
  43. Kim J., Kendall D. A. ( 2000). Sec-dependent protein export and the involvement of the molecular chaperone SecB. Cell Stress Chaperones 5:267–275 [View Article][PubMed]
    [Google Scholar]
  44. Kojima K., Nakamoto H. ( 2007). A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett 581:1871–1880 [View Article][PubMed]
    [Google Scholar]
  45. Kortmann J., Sczodrok S., Rinnenthal J., Schwalbe H., Narberhaus F. ( 2011). Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 39:2855–2868 [View Article][PubMed]
    [Google Scholar]
  46. Krishna P. S., Rani B. R., Mohan M. K., Suzuki I., Shivaji S., Prakash J. S. ( 2013). A novel transcriptional regulator, Sll1130, negatively regulates heat-responsive genes in Synechocystis sp. PCC6803. Biochem J 449:751–760 [View Article][PubMed]
    [Google Scholar]
  47. Laczkó-Dobos H., Szalontai B. ( 2009). Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803. Biochemistry 48:10120–10128 [View Article][PubMed]
    [Google Scholar]
  48. Landry S. J., Zeilstra-Ryalls J., Fayet O., Georgopoulos C., Gierasch L. M. ( 1993). Characterization of a functionally important mobile domain of GroES. Nature 364:255–258 [View Article][PubMed]
    [Google Scholar]
  49. Lee S., Prochaska D. J., Fang F., Barnum S. R. ( 1998). A 16.6-kilodalton protein in the cyanobacterium Synechocystis sp. PCC 6803 plays a role in the heat shock response. Curr Microbiol 37:403–407 [View Article][PubMed]
    [Google Scholar]
  50. Lee S., Owen H. A., Prochaska D. J., Barnum S. R. ( 2000). HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Curr Microbiol 40:283–287 [View Article][PubMed]
    [Google Scholar]
  51. Lehel C., Gombos Z., Torok Z., Vigh L. ( 1993a). Growth temperature modulates thermotolerance and heat shock response of cyanobacterium Synechocystis PCC6803. Plant Physiol Biochem 31:81–88
    [Google Scholar]
  52. Lehel C., Los D., Wada H., Györgyei J., Horváth I., Kovács E., Murata N., Vigh L. ( 1993b). A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268:1799–1804[PubMed]
    [Google Scholar]
  53. Lem N. W., Glick B. R. ( 1985). Biotechnological uses of cyanobacteria. Biotechnol Adv 3:195–208 [View Article][PubMed]
    [Google Scholar]
  54. Liu X., Huang W., Li M., Wu Q. ( 2005). Purification and characterization of two small heat shock proteins from Anabaena sp. PCC 7120. IUBMB Life 57:449–454 [View Article][PubMed]
    [Google Scholar]
  55. Lund P. A. ( 2009). Multiple chaperonins in bacteria – why so many?. FEMS Microbiol Rev 33:785–800 [View Article][PubMed]
    [Google Scholar]
  56. Mamedov M. D., Hayashi H., Murata N. ( 1993). Effects of glycine betaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport and phosphorylation reactions in Synechocystis PCC6803. Biochim Biophys Acta 1142:1–5 [View Article]
    [Google Scholar]
  57. Martin J., Geromanos S., Tempest P., Hartl F. U. ( 1993). Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Nature 366:279–282 [View Article][PubMed]
    [Google Scholar]
  58. Mecsas J., Rouviere P. E., Erickson J. W., Donohue T. J., Gross C. A. ( 1993). The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618–2628 [View Article][PubMed]
    [Google Scholar]
  59. Mishra Y., Chaurasia N., Rai L. C. ( 2009). Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: a proteomic analysis of cross tolerance. Photochem Photobiol 85:824–833 [View Article][PubMed]
    [Google Scholar]
  60. Murata N., Wada H., Gombos Z. ( 1992). Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33:933–941
    [Google Scholar]
  61. Nakamoto H., Suzuki N., Roy S. K. ( 2000). Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett 483:169–174 [View Article][PubMed]
    [Google Scholar]
  62. Nakamoto H., Suzuki M., Kojima K. ( 2003). Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett 549:57–62 [View Article][PubMed]
    [Google Scholar]
  63. Nanjo Y., Mizusawa N., Wada H., Slabas A. R., Hayashi H., Nishiyama Y. ( 2010). Synthesis of fatty acids de novo is required for photosynthetic acclimation of Synechocystis sp. PCC 6803 to high temperature. Biochim Biophys Acta 1797:1483–1490 [View Article][PubMed]
    [Google Scholar]
  64. Nikkinen H. L., Hakkila K., Gunnelius L., Huokko T., Pollari M., Tyystjärvi T. ( 2012). The SigB σ factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:514–523 [View Article][PubMed]
    [Google Scholar]
  65. Nimura K., Yoshikawa H., Takahashi H. ( 1996). DnaK3, one of the three DnaK proteins of cyanobacterium Synechococcus sp. PCC7942, is quantitatively detected in the thylakoid membrane. Biochem Biophys Res Commun 229:334–340 [View Article][PubMed]
    [Google Scholar]
  66. Nitta K., Suzuki N., Honma D., Kaneko Y., Nakamoto H. ( 2005). Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria. FEBS Lett 579:1235–1242 [View Article][PubMed]
    [Google Scholar]
  67. Paul S., Singh C., Mishra S., Chaudhuri T. K. ( 2007). The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding. FASEB J 21:2874–2885 [View Article][PubMed]
    [Google Scholar]
  68. Pederson D. M., Daday A., Smith G. D. ( 1986). The use of nickel to probe the role of hydrogen metabolism in cyanobacterial nitrogen fixation. Biochimie 68:113–120 [View Article][PubMed]
    [Google Scholar]
  69. Porankiewicz J., Clarke A. K. ( 1997). Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 179:5111–5117[PubMed]
    [Google Scholar]
  70. Priya S., Sharma S. K., Sood V., Mattoo R. U., Finka A., Azem A., De Los Rios P., Goloubinoff P. ( 2013). GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proc Natl Acad Sci U S A 110:7199–7204 [View Article][PubMed]
    [Google Scholar]
  71. Rajaram H., Apte S. K. ( 2003). Heat-shock response and its contribution to thermotolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Arch Microbiol 179:423–429[PubMed]
    [Google Scholar]
  72. Rajaram H., Apte S. K. ( 2008). Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology 154:317–325 [View Article][PubMed]
    [Google Scholar]
  73. Rajaram H., Apte S. K. ( 2010). Differential regulation of groESL operon expression in response to heat and light in Anabaena. Arch Microbiol 192:729–738 [View Article][PubMed]
    [Google Scholar]
  74. Rajaram H., Ballal A. D., Apte S. K., Wiegert T., Schumann W. ( 2001). Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Biochim Biophys Acta 1519:143–146 [View Article][PubMed]
    [Google Scholar]
  75. Rowland J. G., Pang X., Suzuki I., Murata N., Simon W. J., Slabas A. R. ( 2010). Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC6803. PLoS ONE 5:e10511 [View Article][PubMed]
    [Google Scholar]
  76. Roy S. K., Hiyama T., Nakamoto H. ( 1999). Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an α-crystallin-related, small heat shock protein. Eur J Biochem 262:406–416 [View Article][PubMed]
    [Google Scholar]
  77. Rupprecht E., Gathmann S., Fuhrmann E., Schneider D. ( 2007). Three different DnaK proteins are functionally expressed in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 153:1828–1841 [View Article][PubMed]
    [Google Scholar]
  78. Rupprecht E., Düppre E., Schneider D. ( 2010). Similarities and singularities of three DnaK proteins from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 51:1210–1218 [View Article][PubMed]
    [Google Scholar]
  79. Sato M., Nimura-Matsune K., Watanabe S., Chibazakura T., Yoshikawa H. ( 2007). Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 189:3751–3758 [View Article][PubMed]
    [Google Scholar]
  80. Sato T., Minagawa S., Kojima E., Okamoto N., Nakamoto H. ( 2010). HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol 76:576–589 [View Article][PubMed]
    [Google Scholar]
  81. Saito M., Watanabe S., Yoshikawa H., Nakamoto H. ( 2008). Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 72:1394–1397 [View Article][PubMed]
    [Google Scholar]
  82. Schopf J. W. ( 1975). Precambrian paleobiology: problems and perspectives. Annu Rev Earth Planet Sci 3:213–249 [View Article]
    [Google Scholar]
  83. Singh R. N. ( 1950). Reclamation of ‘Usar’ lands in India through blue-green algae. Nature 165:325–326 [View Article]
    [Google Scholar]
  84. Singh A. K., Summerfield T. C., Li H., Sherman L. A. ( 2006). The heat shock response in the cyanobacterium Synechocystis sp. strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 186:273–286 [View Article][PubMed]
    [Google Scholar]
  85. Slabas A. R., Suzuki I., Murata N., Simon W. J., Hall J. J. ( 2006). Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 6:845–864 [View Article][PubMed]
    [Google Scholar]
  86. Stewart W. D. P. ( 1980). Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34:497–536 [View Article][PubMed]
    [Google Scholar]
  87. Suzuki I., Simon W. J., Slabas A. R. ( 2006). The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 57:1573–1578 [View Article][PubMed]
    [Google Scholar]
  88. Tanaka N., Nakamoto H. ( 1999). HtpG is essential for the thermal stress management in cyanobacteria. FEBS Lett 458:117–123 [View Article][PubMed]
    [Google Scholar]
  89. Tanaka N., Hiyama T., Nakamoto H. ( 1997). Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Biochim Biophys Acta 1343:335–348 [View Article][PubMed]
    [Google Scholar]
  90. Tilly K., VanBogelen R. A., Georgopoulos C., Neidhardt F. C. ( 1983). Identification of the heat-inducible protein C15.4 as the groES gene product in Escherichia coli. J Bacteriol 154:1505–1507[PubMed]
    [Google Scholar]
  91. Tokuriki N., Tawfik D. S. ( 2009). Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673 [View Article][PubMed]
    [Google Scholar]
  92. Tomas C. A., Welker N. E., Papoutsakis E. T. ( 2003). Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965 [View Article][PubMed]
    [Google Scholar]
  93. Török Z., Goloubinoff P., Horváth I., Tsvetkova N. M., Glatz A., Balogh G., Varvasovszki V., Los D. A., Vierling E. & other authors ( 2001). Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 98:3098–3103 [View Article][PubMed]
    [Google Scholar]
  94. Tuominen I., Pollari M., Tyystjärvi E., Tyystjärvi T. ( 2006). The SigB σ factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 580:319–323 [View Article][PubMed]
    [Google Scholar]
  95. Tuominen I., Pollari M., von Wobeser E. A., Tyystjärvi E., Ibelings B. W., Matthijs H. C., Tyystjärvi T. ( 2008). Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. FEBS Lett 582:346–350 [View Article][PubMed]
    [Google Scholar]
  96. Varvasovszki V., Glatz A., Shigapova N., Jósvay K., Vígh L., Horváth I. ( 2003). Only one dnaK homolog, dnaK2, is active transcriptionally and is essential in Synechocystis.. Biochem Biophys Res Commun 305:641–648 [View Article][PubMed]
    [Google Scholar]
  97. Venkataraman G. S. ( 1979). Algal inoculation in rice fields. Nitrogen and Rice311–321 Brady N. C. . La Banos, Phillipines: International Rice Research Institute;
    [Google Scholar]
  98. Warnecke T., Hurst L. D. ( 2010). GroEL dependency affects codon usage – support for a critical role of misfolding in gene evolution. Mol Syst Biol 6:340 [View Article][PubMed]
    [Google Scholar]
  99. Watanabe S., Kobayashi T., Saito M., Sato M., Nimura-Matsune K., Chibazakura T., Taketani S., Nakamoto H., Yoshikawa H. ( 2007a). Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942. Biochem Biophys Res Commun 352:36–41 [View Article][PubMed]
    [Google Scholar]
  100. Watanabe S., Sato M., Nimura-Matsune K., Chibazakura T., Yoshikawa H. ( 2007b). Protection of psbAII transcript from ribonuclease degradation in vitro by DnaK2 and DnaJ2 chaperones of the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 71:279–282 [View Article][PubMed]
    [Google Scholar]
  101. Webb R., Reddy K. J., Sherman L. A. ( 1990). Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol 172:5079–5088[PubMed]
    [Google Scholar]
  102. Whitton B. A., Potts M. ( 2000). The Ecology of Cyanobacteria: Their Diversity in Time and Space. Berlin: Springer;
    [Google Scholar]
  103. Wolk C. P. ( 1968). Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol 96:2138–2143[PubMed]
    [Google Scholar]
  104. Young J. C., Agashe V. R., Siegers K., Hartl F. U. ( 2004). Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791 [View Article][PubMed]
    [Google Scholar]
  105. Yura T., Nakahigashi K. ( 1999). Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158 [View Article][PubMed]
    [Google Scholar]
  106. Zeilstra-Ryalls J., Fayet O., Baird L., Georgopoulos C. ( 1993). Sequence analysis and phenotypic characterization of groEL mutations that block λ and T4 bacteriophage growth. J Bacteriol 175:1134–1143[PubMed]
    [Google Scholar]
  107. Zingaro K. A., Papoutsakis E. T. ( 2013). GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205 [View Article][PubMed]
    [Google Scholar]
  108. Zorina A., Stepanchenko N., Novikova G. V., Sinetova M., Panichkin V. B., Moshkov I. E., Zinchenko V. V., Shestakov S. V., Suzuki I. & other authors ( 2011). Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the cyanobacterium Synechocystis. DNA Res 18:137–151 [View Article][PubMed]
    [Google Scholar]
  109. Zuber U., Schumann W. ( 1994). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073478-0
Loading
/content/journal/micro/10.1099/mic.0.073478-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error