1887

Abstract

, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking and could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, ΔΔ did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from was purified from recombinant and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a of 7.7 U mg. FadH from also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (  = 330 mM,  = 9.6 U mg), 1-propanol (  = 150 mM,  = 5 U mg) and 1-butanol (  = 50 mM,  = 0.8 U mg). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072413-0
2013-12-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2651.html?itemId=/content/journal/micro/10.1099/mic.0.072413-0&mimeType=html&fmt=ahah

References

  1. Ando M., Yoshimoto T., Ogushi S., Rikitake K., Shibata S., Tsuru D.. ( 1979;). Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties. J Biochem85:1165–1172[PubMed]
    [Google Scholar]
  2. Anthony C.. ( 1982;). The Biochemistry of Methylotrophs London, New York: Academic Press;
    [Google Scholar]
  3. Arndt A., Eikmanns B. J.. ( 2007;). The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol189:7408–7416 [CrossRef][PubMed]
    [Google Scholar]
  4. Arndt A., Auchter M., Ishige T., Wendisch V. F., Eikmanns B. J.. ( 2008;). Ethanol catabolism in Corynebacterium glutamicum. . J Mol Microbiol Biotechnol15:222–233 [CrossRef][PubMed]
    [Google Scholar]
  5. Auchter M., Arndt A., Eikmanns B. J.. ( 2009;). Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol140:84–91 [CrossRef][PubMed]
    [Google Scholar]
  6. Brautaset T., Jakobsen M Ø. M., Flickinger M. C., Valla S., Ellingsen T. E.. ( 2004;). Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. . J Bacteriol186:1229–1238 [CrossRef][PubMed]
    [Google Scholar]
  7. Chang C. C., Gershwin M. E.. ( 1992;). Perspectives on formaldehyde toxicity: separating fact from fantasy. Regul Toxicol Pharmacol16:150–160 [CrossRef][PubMed]
    [Google Scholar]
  8. Chistoserdova L., Gomelsky L., Vorholt J. A., Gomelsky M., Tsygankov Y. D., Lidstrom M. E.. ( 2000;). Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology146:233–238[PubMed]
    [Google Scholar]
  9. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D.. ( 1998;). Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem254:96–102 [CrossRef][PubMed]
    [Google Scholar]
  10. Eggeling L., Bott M.. (editors) ( 2005;). Handbook of Corynebacterium Glutamicum Boca Raton, USA: CRC Press; [CrossRef]
    [Google Scholar]
  11. Eggeling L., Sahm H.. ( 1985;). The formaldehyde dehydrogenase of Rhodococcus erythropolis, a trimeric enzyme requiring a cofactor and active with alcohols. Eur J Biochem150:129–134 [CrossRef][PubMed]
    [Google Scholar]
  12. Eikmanns B. J.. ( 2005;). Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. Handbook on Corynebacterium Glutamicum241–276 Eggeling L., Bott M.. Boca Raton, USA: CRC Press; [CrossRef]
    [Google Scholar]
  13. Fang Z., Roberts A. A., Weidman K., Sharma S. V., Claiborne A., Hamilton C. J., Dos Santos P. C.. ( 2013;). Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways. Biochem J454:239–247[PubMed][CrossRef]
    [Google Scholar]
  14. Feng J., Che Y., Milse J., Yin Y. J., Liu L., Rückert C., Shen X. H., Qi S. W., Kalinowski J., Liu S. J.. ( 2006;). The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum. . J Biol Chem281:10778–10785 [CrossRef][PubMed]
    [Google Scholar]
  15. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J.. ( 2003;). Acetate metabolism and its regulation in Corynebacterium glutamicum. . J Biotechnol104:99–122 [CrossRef][PubMed]
    [Google Scholar]
  16. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A. III, Smith H. O.. ( 2009;). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods6:343–345 [CrossRef][PubMed]
    [Google Scholar]
  17. Goenrich M., Bartoschek S., Hagemeier C. H., Griesinger C., Vorholt J. A.. ( 2002;). A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem277:3069–3072 [CrossRef][PubMed]
    [Google Scholar]
  18. Gutheil W. G., Holmquist B., Vallee B. L.. ( 1992;). Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry31:475–481 [CrossRef][PubMed]
    [Google Scholar]
  19. Gutheil W. G., Kasimoglu E., Nicholson P. C.. ( 1997;). Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza. . Biochem Biophys Res Commun238:693–696 [CrossRef][PubMed]
    [Google Scholar]
  20. Habibi A., Vahabzadeh F.. ( 2013;). Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs. J Environ Sci Health A Tox Hazard Subst Environ Eng48:279–292 [CrossRef][PubMed]
    [Google Scholar]
  21. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  22. Hibi M., Sonoki T., Mori H.. ( 2005;). Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol Lett253:237–242 [CrossRef][PubMed]
    [Google Scholar]
  23. Jakobsen O. M., Benichou A., Flickinger M. C., Valla S., Ellingsen T. E., Brautaset T.. ( 2006;). Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. . J Bacteriol188:3063–3072 [CrossRef][PubMed]
    [Google Scholar]
  24. Jaureguibeitia A., Saá L., Llama M. J., Serra J. L.. ( 2007;). Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol73:1073–1086 [CrossRef][PubMed]
    [Google Scholar]
  25. Jensen J. V., Wendisch V. F.. ( 2013;). Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. . Microb Cell Fact12:63 [CrossRef][PubMed]
    [Google Scholar]
  26. Jothivasan V. K., Hamilton C. J.. ( 2008;). Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep25:1091–1117 [CrossRef][PubMed]
    [Google Scholar]
  27. Kallen R. G., Jencks W. P.. ( 1966;). The mechanism of the condensation of formaldehyde with tetrahydrofolic acid. J Biol Chem241:5851–5863[PubMed]
    [Google Scholar]
  28. Kato N., Higuchi T., Sakazawa C., Nishizawa T., Tani Y., Yamada H.. ( 1982;). Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201. Biochim Biophys Acta715:143–150 [CrossRef][PubMed]
    [Google Scholar]
  29. Kato N., Yurimoto H., Thauer R. K.. ( 2006;). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem70:10–21 [CrossRef][PubMed]
    [Google Scholar]
  30. Keilhauer C., Eggeling L., Sahm H.. ( 1993;). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol175:5595–5603[PubMed]
    [Google Scholar]
  31. Kotrbova-Kozak A., Kotrba P., Inui M., Sajdok J., Yukawa H.. ( 2007;). Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol76:1347–1356 [CrossRef][PubMed]
    [Google Scholar]
  32. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  33. Lagacé L., Gaudy R., Perez-Locas C., Sadiki M.. ( 2012;). Determination of naturally occurring formaldehyde levels in sap and wood tissue of maple trees using gas chromatography/mass spectrometry. J AOAC Int95:394–398 [CrossRef][PubMed]
    [Google Scholar]
  34. Lee S. L., Wang M. F., Lee A. I., Yin S. J.. ( 2003;). The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett544:143–147 [CrossRef][PubMed]
    [Google Scholar]
  35. Lindner S. N., Vidaurre D., Willbold S., Schoberth S. M., Wendisch V. F.. ( 2007;). NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. . Appl Environ Microbiol73:5026–5033 [CrossRef][PubMed]
    [Google Scholar]
  36. Liu Y. B., Long M. X., Yin Y. J., Si M. R., Zhang L., Lu Z. Q., Wang Y., Shen X. H.. ( 2013;). Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. . Arch Microbiol195:419–429 [CrossRef][PubMed]
    [Google Scholar]
  37. Lovschall H., Eiskjaer M., Arenholt-Bindslev D.. ( 2002;). Formaldehyde cytotoxicity in three human cell types assessed in three different assays. Toxicol In Vitro16:63–69 [CrossRef][PubMed]
    [Google Scholar]
  38. Lüers G. H., Advani R., Wenzel T., Subramani S.. ( 1998;). The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast14:759–771 [CrossRef][PubMed]
    [Google Scholar]
  39. Maden B. E.. ( 2000;). Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J350:609–629 [CrossRef][PubMed]
    [Google Scholar]
  40. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C.. & other authors ( 2011;). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res39:Database issueD225–D229 [CrossRef][PubMed]
    [Google Scholar]
  41. Martínez M. C., Achkor H., Persson B., Fernández M. R., Shafqat J., Farrés J., Jörnvall H., Parés X.. ( 1996;). Arabidopsis formaldehyde dehydrogenase. Molecular properties of plant class III alcohol dehydrogenase provide further insights into the origins, structure and function of plant class p and liver class I alcohol dehydrogenases. Eur J Biochem241:849–857 [CrossRef][PubMed]
    [Google Scholar]
  42. Merkens H., Beckers G., Wirtz A., Burkovski A.. ( 2005;). Vanillate metabolism in Corynebacterium glutamicum. . Curr Microbiol51:59–65 [CrossRef][PubMed]
    [Google Scholar]
  43. Misset-Smits M., van Ophem P. W., Sakuda S., Duine J. A.. ( 1997;). Mycothiol, 1-O-(2′-[N-acetyl-L-cysteinyl]amido-2′-deoxy-alpha-D-glucopyranosyl)-D- myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett409:221–222 [CrossRef][PubMed]
    [Google Scholar]
  44. Moon M. W., Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., Lee J. K.. ( 2005;). Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett244:259–266 [CrossRef][PubMed]
    [Google Scholar]
  45. Nash T.. ( 1953;). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J55:416–421[PubMed]
    [Google Scholar]
  46. Newton G. L., Arnold K., Price M. S., Sherrill C., Delcardayre S. B., Aharonowitz Y., Cohen G., Davies J., Fahey R. C., Davis C.. ( 1996;). Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol178:1990–1995[PubMed]
    [Google Scholar]
  47. Newton G. L., Buchmeier N., Fahey R. C.. ( 2008;). Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria . Microbiol Mol Biol Rev72:471–494 [CrossRef][PubMed]
    [Google Scholar]
  48. Newton G. L., Rawat M., La Clair J. J., Jothivasan V. K., Budiarto T., Hamilton C. J., Claiborne A., Helmann J. D., Fahey R. C.. ( 2009;). Bacillithiol is an antioxidant thiol produced in Bacilli . Nat Chem Biol5:625–627 [CrossRef][PubMed]
    [Google Scholar]
  49. Nguyen T. T., Eiamphungporn W., Mäder U., Liebeke M., Lalk M., Hecker M., Helmann J. D., Antelmann H.. ( 2009;). Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR). Mol Microbiol71:876–894 [CrossRef][PubMed]
    [Google Scholar]
  50. Norin A., Van Ophem P. W., Piersma S. R., Persson B., Duine J. A., Jörnvall H.. ( 1997;). Mycothiol-dependent formaldehyde dehydrogenase, a prokaryotic medium-chain dehydrogenase/reductase, phylogenetically links different eukaroytic alcohol dehydrogenases–primary structure, conformational modelling and functional correlations. Eur J Biochem248:282–289 [CrossRef][PubMed]
    [Google Scholar]
  51. Pauling J., Röttger R., Tauch A., Azevedo V., Baumbach J.. ( 2012;). CoryneRegNet 6.0–Updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res40:Database issueD610–D614 [CrossRef][PubMed]
    [Google Scholar]
  52. Peters E., Wittrock F., Großmann K., Frieß U., Richter A., Burrows J. P.. ( 2012;). Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations. Atmos Chem Phys12:11179–11197 [CrossRef]
    [Google Scholar]
  53. Peters-Wendisch P. G., Wendisch V. F., de Graaf A. A., Eikmanns B. J., Sahm H.. ( 1996;). C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum. . Arch Microbiol165:387–396 [CrossRef][PubMed]
    [Google Scholar]
  54. Peters-Wendisch P. G., Schiel B., Wendisch V. F., Katsoulidis E., Möckel B., Sahm H., Eikmanns B. J.. ( 2001;). Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. . J Mol Microbiol Biotechnol3:295–300[PubMed]
    [Google Scholar]
  55. Peters-Wendisch P., Stolz M., Etterich H., Kennerknecht N., Sahm H., Eggeling L.. ( 2005;). Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol71:7139–7144 [CrossRef][PubMed]
    [Google Scholar]
  56. Pomper B. K., Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K.. ( 1999;). A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem261:475–480 [CrossRef][PubMed]
    [Google Scholar]
  57. Quayle J. R.. ( 1980;). Microbial assimilation of C1 compounds. The Thirteenth CIBA Medal Lecture. Biochem Soc Trans8:1–10[PubMed]
    [Google Scholar]
  58. Sambrook J., Russell D.. ( 2001;). Molecular Cloning. A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratoy Press;
    [Google Scholar]
  59. Sanghani P. C., Bosron W. F., Hurley T. D.. ( 2002;). Human glutathione-dependent formaldehyde dehydrogenase. Structural changes associated with ternary complex formation. Biochemistry41:15189–15194 [CrossRef][PubMed]
    [Google Scholar]
  60. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. . Gene145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  61. Schüte H., Flossdorf J., Sahm H., Kula M. R.. ( 1976;). Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. . Eur J Biochem62:151–160 [CrossRef][PubMed]
    [Google Scholar]
  62. Shen X., Liu S.. ( 2005;). Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. . Sci China C Life Sci48:241–249[PubMed]
    [Google Scholar]
  63. Siewe R. M., Weil B., Burkovski A., Eikmanns B. J., Eikmanns M., Krämer R.. ( 1996;). Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. . J Biol Chem271:5398–5403 [CrossRef][PubMed]
    [Google Scholar]
  64. Simic P., Willuhn J., Sahm H., Eggeling L.. ( 2002;). Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. . Appl Environ Microbiol68:3321–3327 [CrossRef][PubMed]
    [Google Scholar]
  65. Sindelar G., Wendisch V. F.. ( 2007;). Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol76:677–689 [CrossRef][PubMed]
    [Google Scholar]
  66. Smejkalová H., Erb T. J., Fuchs G.. ( 2010;). Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE5: [CrossRef][PubMed]
    [Google Scholar]
  67. Stansen C., Uy D., Delaunay S., Eggeling L., Goergen J. L., Wendisch V. F.. ( 2005;). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol71:5920–5928 [CrossRef][PubMed]
    [Google Scholar]
  68. Steenkamp D. J., Vogt R. N.. ( 2004;). Preparation and utilization of a reagent for the isolation and purification of low-molecular-mass thiols. Anal Biochem325:21–27 [CrossRef][PubMed]
    [Google Scholar]
  69. Stolz M., Peters-Wendisch P., Etterich H., Gerharz T., Faurie R., Sahm H., Fersterra H., Eggeling L.. ( 2007;). Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. . Appl Environ Microbiol73:750–755 [CrossRef][PubMed]
    [Google Scholar]
  70. Stolzenberger J., Lindner S. N., Wendisch V. F.. ( 2013a;). The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology159:1770–1781 [CrossRef][PubMed]
    [Google Scholar]
  71. Stolzenberger J., Lindner S. N., Persicke M., Brautaset T., Wendisch V. F.. ( 2013b;). Characterization of fructose 1,6‐bisphosphatase and sedoheptulose 1,7‐bisphosphatase from the facultative ribulose monophosphate cycle methylotroph. Bacillus methanolicus. J Bacteriol.195:in press [CrossRef][PubMed]
    [Google Scholar]
  72. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. ( 1990;). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89 [CrossRef][PubMed]
    [Google Scholar]
  73. Szende B., Tyihák E.. ( 2010;). Effect of formaldehyde on cell proliferation and death. Cell Biol Int34:1273–1282 [CrossRef][PubMed]
    [Google Scholar]
  74. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  75. Tauch A., Kirchner O., Löffler B., Götker S., Pühler A., Kalinowski J.. ( 2002;). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol45:362–367 [CrossRef][PubMed]
    [Google Scholar]
  76. Teng S., Beard K., Pourahmad J., Moridani M., Easson E., Poon R., O’Brien P. J.. ( 2001;). The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chem Biol Interact130-132:285–296 [CrossRef][PubMed]
    [Google Scholar]
  77. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  78. Tralau T., Lafite P., Levy C., Combe J. P., Scrutton N. S., Leys D.. ( 2009;). An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J Biol Chem284:17826–17834 [CrossRef][PubMed]
    [Google Scholar]
  79. Tsuru D., Oda N., Matsuo Y., Ishikawa S., Ito K., Yoshimoto T.. ( 1997;). Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues. Biosci Biotechnol Biochem61:1354–1357 [CrossRef][PubMed]
    [Google Scholar]
  80. Tyihák E., Albert L., Németh Z. I., Kátay G., Király-Véghely Z., Szende B.. ( 1998;). Formaldehyde cycle and the natural formaldehyde generators and capturers. Acta Biol Hung49:225–238[PubMed]
    [Google Scholar]
  81. van Ophem P. W., Van Beeumen J., Duine J. A.. ( 1992;). NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. . Eur J Biochem206:511–518 [CrossRef][PubMed]
    [Google Scholar]
  82. Vogt R. N., Steenkamp D. J., Zheng R., Blanchard J. S.. ( 2003;). The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase. Biochem J374:657–666 [CrossRef][PubMed]
    [Google Scholar]
  83. Vorholt J. A.. ( 2002;). Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol178:239–249 [CrossRef][PubMed]
    [Google Scholar]
  84. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K.. ( 2000;). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol182:6645–6650 [CrossRef][PubMed]
    [Google Scholar]
  85. Wendisch V. F.. (editor) ( 2007;). Amino Acid Biosynthesis – Pathways, Regulation and Metabolic EngineeringMicrobiology Monographs Heidelberg, Germany: Springer; [CrossRef]
    [Google Scholar]
  86. Witthoff S., Eggeling L., Bott M., Polen T.. ( 2012;). Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. Microbiology158:2428–2439 [CrossRef][PubMed]
    [Google Scholar]
  87. Yang Z. N., Bosron W. F., Hurley T. D.. ( 1997;). Structure of human chi chi alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase. J Mol Biol265:330–343 [CrossRef][PubMed]
    [Google Scholar]
  88. Yasueda H., Kawahara Y., Sugimoto S.. ( 1999;). Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol181:7154–7160[PubMed]
    [Google Scholar]
  89. Yurimoto H., Kato N., Sakai Y.. ( 2005;). Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Rec5:367–375 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072413-0
Loading
/content/journal/micro/10.1099/mic.0.072413-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error