1887

Abstract

Group G (GGS) is a human bacterial pathogen expressing surface proteins FOG and protein G (PG) which interact with several host defence systems, including the complement and contact systems. Selected reaction monitoring mass spectrometry, electron microscopy and protein binding assays were used to track the amounts of FOG and PG intracellularly and on the bacterial surface during different phases of growth. Large and increasing amounts of PG were present on the surface in the stationary growth phase, and this was due to production. In contrast, the amount of FOG did not change substantially during this phase. Apart from PG, a number of housekeeping proteins also increased in abundance in the stationary phase. These results show that GGS protein production is active during the stationary phase and that the bacteria actively remodel their surface and enter a less pro-inflammatory state in this phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071332-0
2014-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/2/279.html?itemId=/content/journal/micro/10.1099/mic.0.071332-0&mimeType=html&fmt=ahah

References

  1. Barer M. R.. ( 2007;). Bacterial growth, physiology and death. . In Medical Microbiology, , 17th edn., pp. 38–51. Edited by Greenwood D., Slack R., Peutherer J., Barer M... Edinburgh:: Elsevier;.
    [Google Scholar]
  2. Björck L., Kronvall G.. ( 1984;). Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. . J Immunol 133:, 969–974.[PubMed]
    [Google Scholar]
  3. Björck L., Kastern W., Lindahl G., Widebäck K.. ( 1987;). Streptococcal protein G, expressed by streptococci or by Escherichia coli, has separate binding sites for human albumin and IgG. . Mol Immunol 24:, 1113–1122. [CrossRef][PubMed]
    [Google Scholar]
  4. Bober M., Enochsson C., Collin M., Mörgelin M.. ( 2010;). Collagen VI is a subepithelial adhesive target for human respiratory tract pathogens. . J Innate Immun 2:, 160–166. [CrossRef][PubMed]
    [Google Scholar]
  5. Bramhachari P. V., Kaul S. Y., McMillan D. J., Shaila M. S., Karmarkar M. G., Sriprakash K. S.. ( 2010;). Disease burden due to Streptococcus dysgalactiae subsp. equisimilis (group G and C streptococcus) is higher than that due to Streptococcus pyogenes among Mumbai school children. . J Med Microbiol 59:, 220–223. [CrossRef][PubMed]
    [Google Scholar]
  6. Brandt C. M., Spellerberg B.. ( 2009;). Human infections due to Streptococcus dysgalactiae subspecies equisimilis. . Clin Infect Dis 49:, 766–772. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Z., Itzek A., Malke H., Ferretti J. J., Kreth J.. ( 2012;). Dynamics of speB mRNA transcripts in Streptococcus pyogenes. . J Bacteriol 194:, 1417–1426. [CrossRef][PubMed]
    [Google Scholar]
  8. de Château M., Holst E., Björck L.. ( 1996;). Protein PAB, an albumin-binding bacterial surface protein promoting growth and virulence. . J Biol Chem 271:, 26609–26615. [CrossRef][PubMed]
    [Google Scholar]
  9. Dinkla K., Nitsche-Schmitz D. P., Barroso V., Reissmann S., Johansson H. M., Frick I.-M., Rohde M., Chhatwal G. S.. ( 2007;). Identification of a streptococcal octapeptide motif involved in acute rheumatic fever. . J Biol Chem 282:, 18686–18693. [CrossRef][PubMed]
    [Google Scholar]
  10. Egesten A., Eliasson M., Johansson H. M., Olin A. I., Mörgelin M., Mueller A., Pease J. E., Frick I.-M., Bjorck L.. ( 2007;). The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. . J Infect Dis 195:, 684–693. [CrossRef][PubMed]
    [Google Scholar]
  11. Egesten A., Frick I.-M., Mörgelin M., Olin A. I., Björck L.. ( 2011;). Binding of albumin promotes bacterial survival at the epithelial surface. . J Biol Chem 286:, 2469–2476. [CrossRef][PubMed]
    [Google Scholar]
  12. Frick I.-M., Åkesson P., Herwald H., Mörgelin M., Malmsten M., Nägler D. K., Björck L.. ( 2006;). The contact system – a novel branch of innate immunity generating antibacterial peptides. . EMBO J 25:, 5569–5578. [CrossRef][PubMed]
    [Google Scholar]
  13. Guss B., Eliasson M., Olsson A., Uhlén M., Frej A. K., Jörnvall H., Flock J. I., Lindberg M.. ( 1986;). Structure of the IgG-binding regions of streptococcal protein G. . EMBO J 5:, 1567–1575.[PubMed]
    [Google Scholar]
  14. Herwald H., Cramer H., Mörgelin M., Russell W., Sollenberg U., Norrby-Teglund A., Flodgaard H., Lindbom L., Björck L.. ( 2004;). M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. . Cell 116:, 367–379. [CrossRef][PubMed]
    [Google Scholar]
  15. Johansson H. M., Mörgelin M., Frick I.-M.. ( 2004;). Protein FOG – a streptococcal inhibitor of neutrophil function. . Microbiology 150:, 4211–4221. [CrossRef][PubMed]
    [Google Scholar]
  16. Karlsson C., Malmström L., Aebersold R., Malmström J.. ( 2012;). Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes. . Nature Commun 3:, 1301. [CrossRef][PubMed]
    [Google Scholar]
  17. Lei B., Mackie S., Lukomski S., Musser J. M.. ( 2000;). Identification and immunogenicity of group A Streptococcus culture supernatant proteins. . Infect Immun 68:, 6807–6818. [CrossRef][PubMed]
    [Google Scholar]
  18. Loughman J. A., Caparon M.. ( 2006;). Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. . J Bacteriol 188:, 399–408. [CrossRef][PubMed]
    [Google Scholar]
  19. Malmström L., Marko-Varga G., Westergren-Thorsson G., Laurell T., Malmström J.. ( 2006;). 2DDB – a bioinformatics solution for analysis of quantitative proteomics data. . BMC Bioinformatics 7:, 158. [CrossRef][PubMed]
    [Google Scholar]
  20. Malmström J., Karlsson C., Nordenfelt P., Ossola R., Weisser H., Quandt A., Hansson K., Aebersold R., Malmström L., Björck L.. ( 2012a;). Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics. . J Biol Chem 287:, 1415–1425. [CrossRef][PubMed]
    [Google Scholar]
  21. Malmström L., Malmström J., Selevsek N., Rosenberger G., Aebersold R.. ( 2012b;). Automated Workflow for large-scale selected reaction monitoring experiments. . J Proteome Res 11:, 1644–1653. [CrossRef][PubMed]
    [Google Scholar]
  22. Nature Methods Editors ( 2013;). Method of the year 2012. . Nature Methods 10:, 1–1. [CrossRef]
    [Google Scholar]
  23. Nitsche-Schmitz D. P., Johansson H. M., Sastalla I., Reissmann S., Frick I.-M., Chhatwal G. S.. ( 2007;). Group G streptococcal IgG binding molecules FOG and protein G have different impacts on opsonization by C1q. . J Biol Chem 282:, 17530–17536. [CrossRef][PubMed]
    [Google Scholar]
  24. Nordahl E. A., Rydengård V., Nyberg P., Nitsche D. P., Mörgelin M., Malmsten M., Björck L., Schmidtchen A.. ( 2004;). Activation of the complement system generates antibacterial peptides. . Proc Natl Acad Sci U S A 101:, 16879–16884. [CrossRef][PubMed]
    [Google Scholar]
  25. Picotti P., Aebersold R.. ( 2012;). Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. . Nat Methods 9:, 555–566. [CrossRef][PubMed]
    [Google Scholar]
  26. Rasmussen M., Björck L.. ( 2002;). Proteolysis and its regulation at the surface of Streptococcus pyogenes. . Mol Microbiol 43:, 537–544. [CrossRef][PubMed]
    [Google Scholar]
  27. Reis K. J., Ayoub E. M., Boyle M. D.. ( 1984;). Streptococcal Fc receptors. I. Isolation and partial characterization of the receptor from a group C streptococcus. . J Immunol 132:, 3091–3097.[PubMed]
    [Google Scholar]
  28. Severin A., Nickbarg E., Wooters J., Quazi S. A., Matsuka Y. V., Murphy E., Moutsatsos I. K., Zagursky R. J., Olmsted S. B.. ( 2007;). Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. . J Bacteriol 189:, 1514–1522. [CrossRef][PubMed]
    [Google Scholar]
  29. Sjöbring U., Falkenberg C., Nielsen E., Akerström B., Björck L.. ( 1988;). Isolation and characterization of a 14-kDa albumin-binding fragment of streptococcal protein G. . J Immunol 140:, 1595–1599.[PubMed]
    [Google Scholar]
  30. Solis N., Larsen M. R., Cordwell S. J.. ( 2010;). Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control. . Proteomics 10:, 2037–2049. [CrossRef][PubMed]
    [Google Scholar]
  31. Takahashi T., Ubukata K., Watanabe H.. ( 2011;). Invasive infection caused by Streptococcus dysgalactiae subsp. equisimilis: characteristics of strains and clinical features. . J Infection Chemother 17:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
  32. Wollein Waldetoft K., Svensson L., Mörgelin M., Olin A. I., Nitsche-Schmitz D. P., Björck L., Frick I.-M.. ( 2012;). Streptococcal surface proteins activate the contact system and control its antibacterial activity. . J Biol Chem 287:, 25010–25018. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071332-0
Loading
/content/journal/micro/10.1099/mic.0.071332-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error