1887

Abstract

In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-5′-phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron–sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in and probably also in other phototrophic sulfur bacteria. The genes also occur in a large number of chemotrophs, indicating a general importance of SoeABC for sulfite oxidation in the cytoplasm. Furthermore, we showed that the periplasmic sulfur substrate-binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective sulfite oxidation in and provided a model for the interplay between these systems despite their localization in different cellular compartments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071019-0
2013-12-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2626.html?itemId=/content/journal/micro/10.1099/mic.0.071019-0&mimeType=html&fmt=ahah

References

  1. Bartlett J. K., Skoog D. A..( 1954;). Colorimetric determination of elemental sulfur in hydrocarbons. Anal Chem26:1008–1011 [CrossRef]
    [Google Scholar]
  2. Bazaral M., Helinski D. R..( 1968;). Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. J Mol Biol36:185–194 [CrossRef][PubMed]
    [Google Scholar]
  3. Bryantseva I. A., Gorlenko V. M., Kompantseva E. I., Imhoff J. F., Süling J., Mityushina L..( 1999;). Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol49:697–703 [CrossRef][PubMed]
    [Google Scholar]
  4. Caumette P., Guyoneaud R., Imhoff J. F., Süling J., Gorlenko V..( 2004;). Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol54:1031–1036 [CrossRef][PubMed]
    [Google Scholar]
  5. D’Errico G., Di Salle A., La Cara F., Rossi M., Cannio R..( 2006;). Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol188:694–701 [CrossRef][PubMed]
    [Google Scholar]
  6. Dahl C..( 1996;). Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiology142:3363–3372 [CrossRef][PubMed]
    [Google Scholar]
  7. Dahl C..( 2008;). Inorganic sulfur compounds as electron donors in purple sulfur bacteria. Sulfur in Phototrophic Organisms289–317 Hell R., Dahl C., Knaff D. B., Leustek T.. Dordrecht: Springer; [CrossRef]
    [Google Scholar]
  8. Dahl C., Engels S., Pott-Sperling A. S., Schulte A., Sander J., Lübbe Y., Deuster O., Brune D. C..( 2005;). Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol187:1392–1404 [CrossRef][PubMed]
    [Google Scholar]
  9. Denkmann K., Grein F., Zigann R., Siemen A., Bergmann J., van Helmont S., Nicolai A., Pereira I. A. C., Dahl C..( 2012;). Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome. Environ Microbiol14:2673–2688 [CrossRef][PubMed]
    [Google Scholar]
  10. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J..( 2001;). Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol67:2873–2882 [CrossRef][PubMed]
    [Google Scholar]
  11. Frigaard N.-U., Bryant D. A..( 2008;). Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. Sulfur Metabolism in Phototrophic Organisms337–355 Hell R., Dahl C., Knaff D. B., Leustek T.. Dordrecht: Springer; [CrossRef]
    [Google Scholar]
  12. Frigaard N.-U., Dahl C..( 2008;). Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol54:103–200 [CrossRef][PubMed]
    [Google Scholar]
  13. Gregersen L. H., Bryant D. A., Frigaard N.-U..( 2011;). Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol2:116 [CrossRef][PubMed]
    [Google Scholar]
  14. Grein F., Pereira I. A. C., Dahl C..( 2010a;). Biochemical characterization of individual components of the Allochromatium vinosum DsrMKJOP transmembrane complex aids understanding of complex function in vivo. J Bacteriol192:6369–6377 [CrossRef][PubMed]
    [Google Scholar]
  15. Grein F., Venceslau S. S., Schneider L., Hildebrandt P., Todorovic S., Pereira I. A. C., Dahl C..( 2010b;). DsrJ, an essential part of the DsrMKJOP transmembrane complex in the purple sulfur bacterium Allochromatium vinosum, is an unusual triheme cytochrome c. Biochemistry49:8290–8299 [CrossRef][PubMed]
    [Google Scholar]
  16. Grein F., Ramos A. R., Venceslau S. S., Pereira I. A. C..( 2013;). Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochim Biophys Acta1827:145–160 [CrossRef][PubMed]
    [Google Scholar]
  17. Heinzinger N. K., Fujimoto S. Y., Clark M. A., Moreno M. S., Barrett E. L..( 1995;). Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol177:2813–2820[PubMed]
    [Google Scholar]
  18. Hensel M., Hinsley A. P., Nikolaus T., Sawers G., Berks B. C..( 1999;). The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol32:275–287 [CrossRef][PubMed]
    [Google Scholar]
  19. Hensen D., Sperling D., Trüper H. G., Brune D. C., Dahl C..( 2006;). Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol62:794–810 [CrossRef][PubMed]
    [Google Scholar]
  20. Hipp W. M., Pott A. S., Thum-Schmitz N., Faath I., Dahl C., Trüper H. G..( 1997;). Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology143:2891–2902 [CrossRef][PubMed]
    [Google Scholar]
  21. Horton R. M..( 1995;). PCR-mediated recombination and mutagenesis. Mol Biotechnol3:93–99 [CrossRef][PubMed]
    [Google Scholar]
  22. Imhoff J. F..( 2005a;). Family I. Chromatiaceae Bavendamm 1924, 125AL emend. Imhoff 1984b, 339. Bergey's Manual of Systematic Bacteriology3–40 Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  23. Imhoff J. F..( 2005b;). Family II. Ectothiorhodospiraceae Imhoff 1984b, 339VP. Bergey's Manual of Systematic Bacteriology41–57 Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  24. Imhoff J. F., Süling J., Petri R..( 1998;). Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol48:1129–1143 [CrossRef][PubMed]
    [Google Scholar]
  25. Jormakka M., Yokoyama K., Yano T., Tamakoshi M., Akimoto S., Shimamura T., Curmi P., Iwata S..( 2008;). Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol15:730–737 [CrossRef][PubMed]
    [Google Scholar]
  26. Kappler U., Bailey S..( 2005;). Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem280:24999–25007 [CrossRef][PubMed]
    [Google Scholar]
  27. Kappler U., Maher M. J..( 2013;). The bacterial SoxAX cytochromes. Cell Mol Life Sci70:977–992 [CrossRef][PubMed]
    [Google Scholar]
  28. Kappler U., Bennett B., Rethmeier J., Schwarz G., Deutzmann R., McEwan A. G., Dahl C..( 2000;). Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem275:13202–13212 [CrossRef][PubMed]
    [Google Scholar]
  29. Kelly D. P., Chambers L. A., Trudinger P. A..( 1969;). Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem41:898–901 [CrossRef]
    [Google Scholar]
  30. Kisker C., Schindelin H., Baas D., Rétey J., Meckenstock R. U., Kroneck P. M..( 1998;). A structural comparison of molybdenum cofactor-containing enzymes. FEMS Microbiol Rev22:503–521 [CrossRef][PubMed]
    [Google Scholar]
  31. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M..( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  32. Krafft T., Bokranz M., Klimmek O., Schröder I., Fahrenholz F., Kojro E., Kröger A..( 1992;). Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur J Biochem206:503–510 [CrossRef][PubMed]
    [Google Scholar]
  33. Krejčík Z., Denger K., Weinitschke S., Hollemeyer K., Paces V., Cook A. M., Smits T. H. M..( 2008;). Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol190:159–168 [CrossRef][PubMed]
    [Google Scholar]
  34. Laska S., Lottspeich F., Kletzin A..( 2003;). Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology149:2357–2371 [CrossRef][PubMed]
    [Google Scholar]
  35. Léchenne B., Reichard U., Zaugg C., Fratti M., Kunert J., Boulat O., Monod M..( 2007;). Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology153:905–913 [CrossRef][PubMed]
    [Google Scholar]
  36. Leenhouts K. J., Kok J., Venema G..( 1990;). Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl Environ Microbiol56:2726–2735[PubMed]
    [Google Scholar]
  37. Lehmann S., Johnston A. W. B., Curson A. R. J., Todd J. D., Cook A. M..( 2012;). SoeABC, a novel sulfite dehydrogenase in the Roseobacters. Programme & Abstract Book EMBO Workshop on Microbial Sulfur Metabolism, Noordwijkerhout29
    [Google Scholar]
  38. Lenk S., Moraru C., Hahnke S., Arnds J., Richter M., Kube M., Reinhardt R., Brinkhoff T., Harder J..& other authors ( 2012;). Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J6:2178–2187 [CrossRef][PubMed]
    [Google Scholar]
  39. Lübbe Y. J., Youn H.-S., Timkovich R., Dahl C..( 2006;). Siro(haem)amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c-diamide synthase, for sulphur oxidation. FEMS Microbiol Lett261:194–202 [CrossRef][PubMed]
    [Google Scholar]
  40. Meyer B., Kuever J..( 2007;). Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiology153:3478–3498 [CrossRef][PubMed]
    [Google Scholar]
  41. Meyer B., Imhoff J. F., Kuever J..( 2007;). Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol9:2957–2977 [CrossRef][PubMed]
    [Google Scholar]
  42. Nardi T., Corich V., Giacomini A., Blondin B..( 2010;). A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology156:1686–1696 [CrossRef][PubMed]
    [Google Scholar]
  43. Parey K., Demmer U., Warkentin E., Wynen A., Ermler U., Dahl C..( 2013;). Structural, biochemical and genetic characterization of ATP sulfurylase from Allochromatium vinosum. PLoS ONE8:e74707 [CrossRef]
    [Google Scholar]
  44. Park H., Bakalinsky A. T..( 2000;). SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast16:881–888 [CrossRef][PubMed]
    [Google Scholar]
  45. Pattaragulwanit K., Dahl C..( 1995;). Development of a genetic system for a purple sulfur bacterium: conjugative plasmid transfer in Chromatium vinosum. Arch Microbiol164:217–222 [CrossRef]
    [Google Scholar]
  46. Pattaragulwanit K., Brune D. C., Trüper H. G., Dahl C..( 1998;). Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol169:434–444 [CrossRef][PubMed]
    [Google Scholar]
  47. Pfennig N., Trüper H. G..( 1992;). The family Chromatiaceae. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications3200–3221 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer;
    [Google Scholar]
  48. Pott A. S., Dahl C..( 1998;). Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology144:1881–1894 [CrossRef][PubMed]
    [Google Scholar]
  49. Prange A., Engelhardt H., Trüper H. G., Dahl C..( 2004;). The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR. Arch Microbiol182:165–174 [CrossRef][PubMed]
    [Google Scholar]
  50. Ramos A. R., Keller K. L., Wall J. D., Pereira I. A. C..( 2012;). The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5′-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol3:137 [CrossRef][PubMed]
    [Google Scholar]
  51. Reinartz M., Tschäpe J., Brüser T., Trüper H. G., Dahl C..( 1998;). Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol170:59–68 [CrossRef][PubMed]
    [Google Scholar]
  52. Rethmeier J., Rabenstein A., Langer M., Fischer U..( 1997;). Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high- performance liquid chromatography methods. J Chromatogr A760:295–302 [CrossRef]
    [Google Scholar]
  53. Rodriguez J., Hiras J., Hanson T. E..( 2011;). Sulfite oxidation in Chlorobaculum tepidum. Front Microbiol2:112 [CrossRef][PubMed]
    [Google Scholar]
  54. Rother D., Henrich H. J., Quentmeier A., Bardischewsky F., Friedrich C. G..( 2001;). Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol183:4499–4508 [CrossRef][PubMed]
    [Google Scholar]
  55. Roy A. B., Trudinger P. A..( 1970;). The Biochemistry of Inorganic Compounds of Sulfur London: Cambridge University Press;
    [Google Scholar]
  56. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  57. Sánchez O., Ferrera I., Dahl C., Mas J..( 2001;). In vivo role of adenosine-5′-phosphosulfate reductase in the purple sulfur bacterium Allochromatium vinosum. Arch Microbiol176:301–305 [CrossRef][PubMed]
    [Google Scholar]
  58. Sander J., Engels-Schwarzlose S., Dahl C..( 2006;). Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol186:357–366 [CrossRef][PubMed]
    [Google Scholar]
  59. Sauvé V., Bruno S., Berks B. C., Hemmings A. M..( 2007;). The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem282:23194–23204 [CrossRef][PubMed]
    [Google Scholar]
  60. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A..( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  61. Simon J., Kern M..( 2008;). Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration. Biochem Soc Trans36:1011–1016 [CrossRef][PubMed]
    [Google Scholar]
  62. Simon J., Kroneck P. M..( 2013;). Microbial sulfite respiration. Adv Microb Physiol62:45–117 [CrossRef][PubMed]
    [Google Scholar]
  63. Simon R., Priefer U., Pühler A..( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology (N Y)1:784–791 [CrossRef]
    [Google Scholar]
  64. Steudel R., Steudel Y..( 2010;). Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex “Sox” studied by B3LYP-PCM and G3X(MP2) calculations. Phys Chem Chem Phys12:630–644 [CrossRef][PubMed]
    [Google Scholar]
  65. Suzuki I..( 1999;). Oxidation of inorganic sulfur compounds: chemical and enzymatic reactions. Can J Microbiol45:97–105 [CrossRef]
    [Google Scholar]
  66. Weaver P. F., Wall J. D., Gest H..( 1975;). Characterization of Rhodopseudomonas capsulata. Arch Microbiol105:207–216 [CrossRef][PubMed]
    [Google Scholar]
  67. Weinitschke S., Denger K., Cook A. M., Smits T. H. M..( 2007;). The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology153:3055–3060 [CrossRef][PubMed]
    [Google Scholar]
  68. Weissgerber T., Zigann R., Bruce D., Chang Y.-J., Detter J. C., Han C., Hauser L., Jeffries C. D., Land M..& other authors ( 2011;). Complete genome sequence of Allochromatium vinosum DSM 180(T).. Stand Genomic Sci5:311–330 [CrossRef][PubMed]
    [Google Scholar]
  69. Weissgerber T., Dobler N., Polen T., Latus J., Stockdreher Y., Dahl C..( 2013;). Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds. J Bacteriol195:4231–4245 [CrossRef][PubMed]
    [Google Scholar]
  70. Welte C., Hafner S., Krätzer C., Quentmeier A. T., Friedrich C. G., Dahl C..( 2009;). Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Lett583:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  71. Wilson J. J., Kappler U..( 2009;). Sulfite oxidation in Sinorhizobium meliloti. Biochim Biophys Acta1787:1516–1525 [CrossRef][PubMed]
    [Google Scholar]
  72. Zaar A., Fuchs G., Golecki J. R., Overmann J..( 2003;). A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov. Arch Microbiol179:174–183[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071019-0
Loading
/content/journal/micro/10.1099/mic.0.071019-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error