1887

Abstract

Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by , is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as ‘atypical’ and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the cluster contains a number of features that relate to its classification as ‘atypical’: an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070995-0
2013-12-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2524.html?itemId=/content/journal/micro/10.1099/mic.0.070995-0&mimeType=html&fmt=ahah

References

  1. Ames B. D., Korman T. P., Zhang W., Smith P., Vu T., Tang Y., Tsai S. C.. ( 2008;). Crystal structure and functional analysis of tetracenomycin ARO/CYC: implications for cyclization specificity of aromatic polyketides. Proc Natl Acad Sci U S A105:5349–5354 [CrossRef][PubMed]
    [Google Scholar]
  2. Bao W., Wendt-Pienkowski E., Hutchinson C. R.. ( 1998;). Reconstitution of the iterative type II polyketide synthase for tetracenomycin F2 biosynthesis. Biochemistry37:8132–8138 [CrossRef][PubMed]
    [Google Scholar]
  3. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E.. ( 1992;). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene116:43–49 [CrossRef][PubMed]
    [Google Scholar]
  4. Bisang C., Long P. F., Cortés J., Westcott J., Crosby J., Matharu A. L., Cox R. J., Simpson T. J., Staunton J., Leadlay P. F.. ( 1999;). A chain initiation factor common to both modular and aromatic polyketide synthases. Nature401:502–505 [CrossRef][PubMed]
    [Google Scholar]
  5. Carreras C. W., Khosla C.. ( 1998;). Purification and in vitro reconstitution of the essential protein components of an aromatic polyketide synthase. Biochemistry37:2084–2088 [CrossRef][PubMed]
    [Google Scholar]
  6. Chiba K., Hoshino Y., Ishino K., Kogure T., Mikami Y., Uehara Y., Ishikawa J.. ( 2007;). Construction of a pair of practical Nocardia-Escherichia coli shuttle vectors. Jpn J Infect Dis60:45–47[PubMed]
    [Google Scholar]
  7. Chopra I.. ( 1994;). Tetracycline analogs whose primary target is not the bacterial ribosome. Antimicrob Agents Chemother38:637–640 [CrossRef][PubMed]
    [Google Scholar]
  8. Chopra I., Hawkey P. M., Hinton M.. ( 1992;). Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother29:245–277 [CrossRef][PubMed]
    [Google Scholar]
  9. Chu D. T. W., Huckin S. N., Bernstein E., Garmaise D. L., Egan R. S., Stanaszek R. S.. ( 1981;). Chemistry of chelocardin. V. Condensation with amino reagents. Can J Chem59:763–767 [CrossRef]
    [Google Scholar]
  10. Das A., Khosla C.. ( 2009;). Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res42:631–639 [CrossRef][PubMed]
    [Google Scholar]
  11. Dhingra G., Kumari R., Bala S., Majumdar S., Malhotra S., Sharma P., Lal S., Cullum J., Lal R.. ( 2003;). Development of cloning vectors and transformation methods for Amycolatopsis . J Ind Microbiol Biotechnol30:195–204[PubMed][CrossRef]
    [Google Scholar]
  12. Fu H., Ebert-Kkhosla S., Hopwood D. A., Khosla C.. ( 1994;). Relaxed specificity of the oxytetracycline polyketide synthase for an acetate primer in the absence of a malonamyl primer. J Am Chem Soc116:6443–6444 [CrossRef]
    [Google Scholar]
  13. Hertweck C., Luzhetskyy A., Rebets Y., Bechthold A.. ( 2007;). Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep24:162–190 [CrossRef][PubMed]
    [Google Scholar]
  14. Hitchman T. S., Crosby J., Byrom K. J., Cox R. J., Simpson T. J.. ( 1998;). Catalytic self-acylation of type II polyketide synthase acyl carrier proteins. Chem Biol5:35–47 [CrossRef][PubMed]
    [Google Scholar]
  15. Hopwood D. A.. ( 1997;). Genetic contributions to understanding polyketide synthases. Chem Rev97:2465–2498 [CrossRef][PubMed]
    [Google Scholar]
  16. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  17. Lechevalier M. P., Prauser H., Labeda D. P., Ruan J.-S.. ( 1986;). Two new genera of nocardioform Actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol36:29–37 [CrossRef]
    [Google Scholar]
  18. Lombó F., Blanco G., Fernández E., Méndez C., Salas J. A.. ( 1996;). Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene172:87–91 [CrossRef][PubMed]
    [Google Scholar]
  19. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. ( 1992;). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68 [CrossRef][PubMed]
    [Google Scholar]
  20. Madoń J., Hütter R.. ( 1991;). Transformation system for Amycolatopsis (Nocardia) mediterranei: direct transformation of mycelium with plasmid DNA. J Bacteriol173:6325–6331[PubMed]
    [Google Scholar]
  21. Malhotra S., Lal R.. ( 2007;). The genus Amycolatopsis: indigenous plasmids, cloning vectors and gene transfer systems. Indian J Microbiol47:3–14 [CrossRef][PubMed]
    [Google Scholar]
  22. McCormick J. R., Jensen E. R., Arnold N., Corey H. S., Joachim U. H., Johnson S., Miller P. A., Sjolander N. O.. ( 1968;). Biosynthesis of tetracyclines. XI. The methylanthrone analog of protetrone. J Am Chem Soc90:7127–7129 [CrossRef][PubMed]
    [Google Scholar]
  23. McMurry L. M., Levy S. B.. ( 1998;). Revised sequence of OtrB (tet347) tetracycline efflux protein from Streptomyces rimosus. . Antimicrob Agents Chemother42:3050[PubMed]
    [Google Scholar]
  24. Medveczky P., Chang C.-W., Oste C. C., Mulder C.. ( 1987;). Rapid vacuum driven transfer of DNA and RNA from gels to solid supports. Biotechniques5:242–246
    [Google Scholar]
  25. Menéndez N., Nur-e-Alam M., Braña A. F., Rohr J., Salas J. A., Méndez C.. ( 2004;). Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogs. Chem Biol11:21–32[PubMed]
    [Google Scholar]
  26. Metsä-Ketelä M., Salo V., Halo L., Hautala A., Hakala J., Mäntsälä P., Ylihonko K.. ( 1999;). An efficient approach for screening minimal PKS genes from Streptomyces. . FEMS Microbiol Lett180:1–6 [CrossRef][PubMed]
    [Google Scholar]
  27. Mitscher L. A., Juvarkar J. V., Rosenbrook W. Jr, Andres W. W., Schenk J., Egan R. S.. ( 1970;). Structure of chelocardin, a novel tetracycline antibiotic. J Am Chem Soc92:6070–6071 [CrossRef][PubMed]
    [Google Scholar]
  28. Mitscher L. A., Swayze J. K., Högberg T., Khanna I., Rao G. S., Theriault R. J., Kohl W., Hanson C., Egan R.. ( 1983;). Biosynthesis of cetocycline. J Antibiot (Tokyo)36:1405–1407 [CrossRef][PubMed]
    [Google Scholar]
  29. Moore B. S., Hertweck C.. ( 2002;). Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep19:70–99 [CrossRef][PubMed]
    [Google Scholar]
  30. Oliva B., Chopra I.. ( 1992;). Tet determinants provide poor protection against some tetracyclines: further evidence for division of tetracyclines into two classes. Antimicrob Agents Chemother36:876–878 [CrossRef][PubMed]
    [Google Scholar]
  31. Oliva B., Gordon G., McNicholas P., Ellestad G., Chopra I.. ( 1992;). Evidence that tetracycline analogs whose primary target is not the bacterial ribosome cause lysis of Escherichia coli. . Antimicrob Agents Chemother36:913–919 [CrossRef][PubMed]
    [Google Scholar]
  32. Oliver T. J., Sinclair A. C.. ( 1964;). Antibiotic M-319. United States Patent US3155582
    [Google Scholar]
  33. Olszewska E., Jones K.. ( 1988;). Vacuum blotting enhances nucleic acid transfer. Trends Genet4:92–94 [CrossRef][PubMed]
    [Google Scholar]
  34. Petersen P. J., Jacobus N. V., Weiss W. J., Sum P. E., Testa R. T.. ( 1999;). In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother43:738–744[PubMed]
    [Google Scholar]
  35. Petkovic H., Thamchaipenet A., Zhou L. H., Hranueli D., Raspor P., Waterman P. G., Hunter I. S.. ( 1999;). Disruption of an aromatase/cyclase from the oxytetracycline gene cluster of Streptomyces rimosus results in production of novel polyketides with shorter chain lengths. J Biol Chem274:32829–32834[PubMed]
    [Google Scholar]
  36. Petković H., Cullum J., Hranueli D., Hunter I. S., Perić-Concha N., Pigac J., Thamchaipenet A., Vujaklija D., Long P. F.. ( 2006;). Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev70:704–728 [CrossRef][PubMed]
    [Google Scholar]
  37. Petkovic H., Raspor P., Lesnik U.. ( 2013;). Genes for biosynthesis of tetracycline compounds and uses thereof. United States Patent US8361777 B2
    [Google Scholar]
  38. Pickens L. B., Tang Y.. ( 2010;). Oxytetracycline biosynthesis. J Biol Chem285:27509–27515 [CrossRef][PubMed]
    [Google Scholar]
  39. Pioletti M., Schlünzen F., Harms J., Zarivach R., Glühmann M., Avila H., Bashan A., Bartels H., Auerbach T.. & other authors ( 2001;). Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J20:1829–1839 [CrossRef][PubMed]
    [Google Scholar]
  40. Proctor R., Craig W., Kunin C.. ( 1978;). Cetocycline, tetracycline analog: in vitro studies of antimicrobial activity, serum binding, lipid solubility, and uptake by bacteria. Antimicrob Agents Chemother13:598–604 [CrossRef][PubMed]
    [Google Scholar]
  41. Rasmussen B., Noller H. F., Daubresse G., Oliva B., Misulovin Z., Rothstein D. M., Ellestad G. A., Gluzman Y., Tally F. P., Chopra I.. ( 1991;). Molecular basis of tetracycline action: identification of analogs whose primary target is not the bacterial ribosome. Antimicrob Agents Chemother35:2306–2311 [CrossRef][PubMed]
    [Google Scholar]
  42. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, N: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  43. Saraste M., Sibbald P. R., Wittinghofer A.. ( 1990;). The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci15:430–434 [CrossRef][PubMed]
    [Google Scholar]
  44. Taylor W. R., Green N. M.. ( 1989;). The predicted secondary structures of the nucleotide-binding sites of six cation-transporting ATPases lead to a probable tertiary fold. Eur J Biochem179:241–248 [CrossRef][PubMed]
    [Google Scholar]
  45. Uchiyama H., Weisblum B.. ( 1985;). N-Methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene38:103–110 [CrossRef][PubMed]
    [Google Scholar]
  46. van Wageningen A. M., Kirkpatrick P. N., Williams D. H., Harris B. R., Kershaw J. K., Lennard N. J., Jones M., Jones S. J., Solenberg P. J.. ( 1998;). Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol5:155–162 [CrossRef][PubMed]
    [Google Scholar]
  47. Wang P., Zhang W., Zhan J., Tang Y.. ( 2009;). Identification of OxyE as an ancillary oxygenase during tetracycline biosynthesis. ChemBioChem10:1544–1550 [CrossRef][PubMed]
    [Google Scholar]
  48. Wilson D. N.. ( 2009;). The A-Z of bacterial translation inhibitors. Crit Rev Biochem Mol Biol44:393–433 [CrossRef][PubMed]
    [Google Scholar]
  49. Wu H., Qu S., Lu C., Zheng H., Zhou X., Bai L., Deng Z.. ( 2012;). Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics13:337 [CrossRef][PubMed]
    [Google Scholar]
  50. Zhang W., Ames B. D., Tsai S. C., Tang Y.. ( 2006;). Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol72:2573–2580 [CrossRef][PubMed]
    [Google Scholar]
  51. Zhang W., Watanabe K., Wang C. C., Tang Y.. ( 2007;). Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. J Biol Chem282:25717–25725 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070995-0
Loading
/content/journal/micro/10.1099/mic.0.070995-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error