1887

Abstract

Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by , is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as ‘atypical’ and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the cluster contains a number of features that relate to its classification as ‘atypical’: an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070995-0
2013-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2524.html?itemId=/content/journal/micro/10.1099/mic.0.070995-0&mimeType=html&fmt=ahah

References

  1. Ames B. D. , Korman T. P. , Zhang W. , Smith P. , Vu T. , Tang Y. , Tsai S. C. . ( 2008; ). Crystal structure and functional analysis of tetracenomycin ARO/CYC: implications for cyclization specificity of aromatic polyketides. . Proc Natl Acad Sci U S A 105:, 5349–5354. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bao W. , Wendt-Pienkowski E. , Hutchinson C. R. . ( 1998; ). Reconstitution of the iterative type II polyketide synthase for tetracenomycin F2 biosynthesis. . Biochemistry 37:, 8132–8138. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bierman M. , Logan R. , O’Brien K. , Seno E. T. , Rao R. N. , Schoner B. E. . ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. . Gene 116:, 43–49. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bisang C. , Long P. F. , Cortés J. , Westcott J. , Crosby J. , Matharu A. L. , Cox R. J. , Simpson T. J. , Staunton J. , Leadlay P. F. . ( 1999; ). A chain initiation factor common to both modular and aromatic polyketide synthases. . Nature 401:, 502–505. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carreras C. W. , Khosla C. . ( 1998; ). Purification and in vitro reconstitution of the essential protein components of an aromatic polyketide synthase. . Biochemistry 37:, 2084–2088. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chiba K. , Hoshino Y. , Ishino K. , Kogure T. , Mikami Y. , Uehara Y. , Ishikawa J. . ( 2007; ). Construction of a pair of practical Nocardia-Escherichia coli shuttle vectors. . Jpn J Infect Dis 60:, 45–47.[PubMed]
    [Google Scholar]
  7. Chopra I. . ( 1994; ). Tetracycline analogs whose primary target is not the bacterial ribosome. . Antimicrob Agents Chemother 38:, 637–640. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chopra I. , Hawkey P. M. , Hinton M. . ( 1992; ). Tetracyclines, molecular and clinical aspects. . J Antimicrob Chemother 29:, 245–277. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chu D. T. W. , Huckin S. N. , Bernstein E. , Garmaise D. L. , Egan R. S. , Stanaszek R. S. . ( 1981; ). Chemistry of chelocardin. V. Condensation with amino reagents. . Can J Chem 59:, 763–767. [CrossRef]
    [Google Scholar]
  10. Das A. , Khosla C. . ( 2009; ). Biosynthesis of aromatic polyketides in bacteria. . Acc Chem Res 42:, 631–639. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dhingra G. , Kumari R. , Bala S. , Majumdar S. , Malhotra S. , Sharma P. , Lal S. , Cullum J. , Lal R. . ( 2003; ). Development of cloning vectors and transformation methods for Amycolatopsis . . J Ind Microbiol Biotechnol 30:, 195–204.[PubMed] [CrossRef]
    [Google Scholar]
  12. Fu H. , Ebert-Kkhosla S. , Hopwood D. A. , Khosla C. . ( 1994; ). Relaxed specificity of the oxytetracycline polyketide synthase for an acetate primer in the absence of a malonamyl primer. . J Am Chem Soc 116:, 6443–6444. [CrossRef]
    [Google Scholar]
  13. Hertweck C. , Luzhetskyy A. , Rebets Y. , Bechthold A. . ( 2007; ). Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. . Nat Prod Rep 24:, 162–190. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hitchman T. S. , Crosby J. , Byrom K. J. , Cox R. J. , Simpson T. J. . ( 1998; ). Catalytic self-acylation of type II polyketide synthase acyl carrier proteins. . Chem Biol 5:, 35–47. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hopwood D. A. . ( 1997; ). Genetic contributions to understanding polyketide synthases. . Chem Rev 97:, 2465–2498. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kieser T. , Bibb M. J. , Buttner M. J. , Chater K. F. , Hopwood D. A. . ( 2000; ). Practical Streptomyces Genetics. Norwich:: John Innes Foundation;.
    [Google Scholar]
  17. Lechevalier M. P. , Prauser H. , Labeda D. P. , Ruan J.-S. . ( 1986; ). Two new genera of nocardioform Actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. . Int J Syst Bacteriol 36:, 29–37. [CrossRef]
    [Google Scholar]
  18. Lombó F. , Blanco G. , Fernández E. , Méndez C. , Salas J. A. . ( 1996; ). Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. . Gene 172:, 87–91. [CrossRef] [PubMed]
    [Google Scholar]
  19. MacNeil D. J. , Gewain K. M. , Ruby C. L. , Dezeny G. , Gibbons P. H. , MacNeil T. . ( 1992; ). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. . Gene 111:, 61–68. [CrossRef] [PubMed]
    [Google Scholar]
  20. Madoń J. , Hütter R. . ( 1991; ). Transformation system for Amycolatopsis (Nocardia) mediterranei: direct transformation of mycelium with plasmid DNA. . J Bacteriol 173:, 6325–6331.[PubMed]
    [Google Scholar]
  21. Malhotra S. , Lal R. . ( 2007; ). The genus Amycolatopsis: indigenous plasmids, cloning vectors and gene transfer systems. . Indian J Microbiol 47:, 3–14. [CrossRef] [PubMed]
    [Google Scholar]
  22. McCormick J. R. , Jensen E. R. , Arnold N. , Corey H. S. , Joachim U. H. , Johnson S. , Miller P. A. , Sjolander N. O. . ( 1968; ). Biosynthesis of tetracyclines. XI. The methylanthrone analog of protetrone. . J Am Chem Soc 90:, 7127–7129. [CrossRef] [PubMed]
    [Google Scholar]
  23. McMurry L. M. , Levy S. B. . ( 1998; ). Revised sequence of OtrB (tet347) tetracycline efflux protein from Streptomyces rimosus. . Antimicrob Agents Chemother 42:, 3050.[PubMed]
    [Google Scholar]
  24. Medveczky P. , Chang C.-W. , Oste C. C. , Mulder C. . ( 1987; ). Rapid vacuum driven transfer of DNA and RNA from gels to solid supports. . Biotechniques 5:, 242–246.
    [Google Scholar]
  25. Menéndez N. , Nur-e-Alam M. , Braña A. F. , Rohr J. , Salas J. A. , Méndez C. . ( 2004; ). Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogs. . Chem Biol 11:, 21–32.[PubMed]
    [Google Scholar]
  26. Metsä-Ketelä M. , Salo V. , Halo L. , Hautala A. , Hakala J. , Mäntsälä P. , Ylihonko K. . ( 1999; ). An efficient approach for screening minimal PKS genes from Streptomyces. . FEMS Microbiol Lett 180:, 1–6. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mitscher L. A. , Juvarkar J. V. , Rosenbrook W. Jr , Andres W. W. , Schenk J. , Egan R. S. . ( 1970; ). Structure of chelocardin, a novel tetracycline antibiotic. . J Am Chem Soc 92:, 6070–6071. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mitscher L. A. , Swayze J. K. , Högberg T. , Khanna I. , Rao G. S. , Theriault R. J. , Kohl W. , Hanson C. , Egan R. . ( 1983; ). Biosynthesis of cetocycline. . J Antibiot (Tokyo) 36:, 1405–1407. [CrossRef] [PubMed]
    [Google Scholar]
  29. Moore B. S. , Hertweck C. . ( 2002; ). Biosynthesis and attachment of novel bacterial polyketide synthase starter units. . Nat Prod Rep 19:, 70–99. [CrossRef] [PubMed]
    [Google Scholar]
  30. Oliva B. , Chopra I. . ( 1992; ). Tet determinants provide poor protection against some tetracyclines: further evidence for division of tetracyclines into two classes. . Antimicrob Agents Chemother 36:, 876–878. [CrossRef] [PubMed]
    [Google Scholar]
  31. Oliva B. , Gordon G. , McNicholas P. , Ellestad G. , Chopra I. . ( 1992; ). Evidence that tetracycline analogs whose primary target is not the bacterial ribosome cause lysis of Escherichia coli. . Antimicrob Agents Chemother 36:, 913–919. [CrossRef] [PubMed]
    [Google Scholar]
  32. Oliver T. J. , Sinclair A. C. . ( 1964; ). Antibiotic M-319. . United States Patent US3155582.
    [Google Scholar]
  33. Olszewska E. , Jones K. . ( 1988; ). Vacuum blotting enhances nucleic acid transfer. . Trends Genet 4:, 92–94. [CrossRef] [PubMed]
    [Google Scholar]
  34. Petersen P. J. , Jacobus N. V. , Weiss W. J. , Sum P. E. , Testa R. T. . ( 1999; ). In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). . Antimicrob Agents Chemother 43:, 738–744.[PubMed]
    [Google Scholar]
  35. Petkovic H. , Thamchaipenet A. , Zhou L. H. , Hranueli D. , Raspor P. , Waterman P. G. , Hunter I. S. . ( 1999; ). Disruption of an aromatase/cyclase from the oxytetracycline gene cluster of Streptomyces rimosus results in production of novel polyketides with shorter chain lengths. . J Biol Chem 274:, 32829–32834.[PubMed]
    [Google Scholar]
  36. Petković H. , Cullum J. , Hranueli D. , Hunter I. S. , Perić-Concha N. , Pigac J. , Thamchaipenet A. , Vujaklija D. , Long P. F. . ( 2006; ). Genetics of Streptomyces rimosus, the oxytetracycline producer. . Microbiol Mol Biol Rev 70:, 704–728. [CrossRef] [PubMed]
    [Google Scholar]
  37. Petkovic H. , Raspor P. , Lesnik U. . ( 2013; ). Genes for biosynthesis of tetracycline compounds and uses thereof. . United States Patent US8361777 B2.
    [Google Scholar]
  38. Pickens L. B. , Tang Y. . ( 2010; ). Oxytetracycline biosynthesis. . J Biol Chem 285:, 27509–27515. [CrossRef] [PubMed]
    [Google Scholar]
  39. Pioletti M. , Schlünzen F. , Harms J. , Zarivach R. , Glühmann M. , Avila H. , Bashan A. , Bartels H. , Auerbach T. . & other authors ( 2001; ). Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. . EMBO J 20:, 1829–1839. [CrossRef] [PubMed]
    [Google Scholar]
  40. Proctor R. , Craig W. , Kunin C. . ( 1978; ). Cetocycline, tetracycline analog: in vitro studies of antimicrobial activity, serum binding, lipid solubility, and uptake by bacteria. . Antimicrob Agents Chemother 13:, 598–604. [CrossRef] [PubMed]
    [Google Scholar]
  41. Rasmussen B. , Noller H. F. , Daubresse G. , Oliva B. , Misulovin Z. , Rothstein D. M. , Ellestad G. A. , Gluzman Y. , Tally F. P. , Chopra I. . ( 1991; ). Molecular basis of tetracycline action: identification of analogs whose primary target is not the bacterial ribosome. . Antimicrob Agents Chemother 35:, 2306–2311. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sambrook J. , Russell D. W. . ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, N:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  43. Saraste M. , Sibbald P. R. , Wittinghofer A. . ( 1990; ). The P-loop – a common motif in ATP- and GTP-binding proteins. . Trends Biochem Sci 15:, 430–434. [CrossRef] [PubMed]
    [Google Scholar]
  44. Taylor W. R. , Green N. M. . ( 1989; ). The predicted secondary structures of the nucleotide-binding sites of six cation-transporting ATPases lead to a probable tertiary fold. . Eur J Biochem 179:, 241–248. [CrossRef] [PubMed]
    [Google Scholar]
  45. Uchiyama H. , Weisblum B. . ( 1985; ). N-Methyl transferase of Streptomyces erythraeus that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. . Gene 38:, 103–110. [CrossRef] [PubMed]
    [Google Scholar]
  46. van Wageningen A. M. , Kirkpatrick P. N. , Williams D. H. , Harris B. R. , Kershaw J. K. , Lennard N. J. , Jones M. , Jones S. J. , Solenberg P. J. . ( 1998; ). Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. . Chem Biol 5:, 155–162. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wang P. , Zhang W. , Zhan J. , Tang Y. . ( 2009; ). Identification of OxyE as an ancillary oxygenase during tetracycline biosynthesis. . ChemBioChem 10:, 1544–1550. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wilson D. N. . ( 2009; ). The A-Z of bacterial translation inhibitors. . Crit Rev Biochem Mol Biol 44:, 393–433. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wu H. , Qu S. , Lu C. , Zheng H. , Zhou X. , Bai L. , Deng Z. . ( 2012; ). Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. . BMC Genomics 13:, 337. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zhang W. , Ames B. D. , Tsai S. C. , Tang Y. . ( 2006; ). Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. . Appl Environ Microbiol 72:, 2573–2580. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zhang W. , Watanabe K. , Wang C. C. , Tang Y. . ( 2007; ). Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. . J Biol Chem 282:, 25717–25725. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070995-0
Loading
/content/journal/micro/10.1099/mic.0.070995-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error