1887

Abstract

We describe a previously cryptic phenotype associated with the opportunistic phytopathogen (Pca): surface swarming. We found that when Pca was spotted onto plates containing <0.5 % (w/v) agar, the culture produced copious amounts of extracellular matrix material containing highly motile cells. Once produced, this ‘slime layer’ spread rapidly across the plate either as an advancing front or as tendrils. Transposon mutagenesis was used to identify mutants that were affected in swarming. Hypo-swarmer mutants mostly carried insertions in a horizontally acquired island (HAI5), which encodes a cluster of genes involved in O antigen biosynthesis. Hyper-swarmer mutants mostly carried insertions in , a known antagonist of the class I flagellar master regulator, FlhDC. In addition, we found that the nucleoid protein, histone-like nuclear structuring protein 2 (H-NS2), also regulated swarming behaviour. A mutant in which was overexpressed displayed a hyper-swarming phenotype, whereas a mutant in which the ORF was inactivated had a hypo-swarming phenotype. Swarming was also regulated by quorum sensing (QS) and by the carbon source being utilized. We show, using a range of epistasis experiments, that optimal swarming requires both motility and O antigen biosynthesis, and that H-NS2 and QS both promote swarming through their effects on motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070748-0
2013-11-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2375.html?itemId=/content/journal/micro/10.1099/mic.0.070748-0&mimeType=html&fmt=ahah

References

  1. Aguirre-Ramírez M., Medina G., González-Valdez A., Grosso-Becerra V., Soberón-Chávez G..( 2012;). The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-l-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor σS. Microbiology158:908–916 [CrossRef][PubMed]
    [Google Scholar]
  2. Ali S. S., Xia B., Liu J., Navarre W. W..( 2012;). Silencing of foreign DNA in bacteria. Curr Opin Microbiol15:175–181 [CrossRef][PubMed]
    [Google Scholar]
  3. Andresen L., Sala E., Kõiv V., Mäe A..( 2010;). A role for the Rcs phosphorelay in regulating expression of plant cell wall degrading enzymes in Pectobacterium carotovorum subsp. carotovorum.. Microbiology156:1323–1334 [CrossRef][PubMed]
    [Google Scholar]
  4. Bainton N. J., Bycroft B. W., Chhabra S. R., Stead P., Gledhill L., Hill P. J., Rees C. E., Winson M. K., Salmond G. P..& other authors ( 1992a;). A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia.. Gene116:87–91 [CrossRef][PubMed]
    [Google Scholar]
  5. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P., Stewart G. S., Williams P..( 1992b;). N-(3-oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora.. Biochem J288:997–1004[PubMed]
    [Google Scholar]
  6. Barnard A. M., Bowden S. D., Burr T., Coulthurst S. J., Monson R. E., Salmond G. P..( 2007;). Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond B Biol Sci362:1165–1183 [CrossRef][PubMed]
    [Google Scholar]
  7. Bell K. S., Sebaihia M., Pritchard L., Holden M. T., Hyman L. J., Holeva M. C., Thomson N. R., Bentley S. D., Churcher L. J..& other authors ( 2004;). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A101:11105–11110 [CrossRef][PubMed]
    [Google Scholar]
  8. Burr T., Barnard A. M., Corbett M. J., Pemberton C. L., Simpson N. J., Salmond G. P..( 2006;). Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol59:113–125 [CrossRef][PubMed]
    [Google Scholar]
  9. Castelli M. E., Véscovi E. G..( 2011;). The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens.. J Bacteriol193:63–74 [CrossRef][PubMed]
    [Google Scholar]
  10. Castelli M. E., Fedrigo G. V., Clementín A. L., Ielmini M. V., Feldman M. F., Véscovi E. G..( 2008;). Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens.. J Bacteriol190:213–220 [CrossRef][PubMed]
    [Google Scholar]
  11. Charkowski A., Blanco C., Condemine G., Expert D., Franza T., Hayes C., Hugouvieux-Cotte-Pattat N., López Solanilla E., Low D..& other authors ( 2012;). The role of secretion systems and small molecules in soft-rot enterobacteriaceae pathogenicity. Annu Rev Phytopathol50:425–449 [CrossRef][PubMed]
    [Google Scholar]
  12. Chatterjee A., Cui Y., Chatterjee A. K..( 2009;). RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol191:4582–4593 [CrossRef][PubMed]
    [Google Scholar]
  13. Chatterjee A., Cui Y., Chakrabarty P., Chatterjee A. K..( 2010;). Regulation of motility in Erwinia carotovora subsp. carotovora: quorum-sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. Mol Plant Microbe Interact23:1316–1323 [CrossRef][PubMed]
    [Google Scholar]
  14. Chung J. C. S., Rzhepishevska O., Ramstedt M., Welch M..( 2013;). Type III secretion system expression in oxygen-limited Pseudomonas aeruginosa cultures is stimulated by isocitrate lyase activity. Open Biol3:120131 [CrossRef][PubMed]
    [Google Scholar]
  15. Cui Y., Mukherjee A., Dumenyo C. K., Liu Y., Chatterjee A. K..( 1999;). rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpin(Ecc) production and virulence by modulating levels of regulatory RNA (rsmB) and RNA-binding protein (RsmA). J Bacteriol181:6042–6052[PubMed]
    [Google Scholar]
  16. Cui Y., Chatterjee A., Yang H., Chatterjee A. K..( 2008;). Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol190:4610–4623 [CrossRef][PubMed]
    [Google Scholar]
  17. Daniels R., Vanderleyden J., Michiels J..( 2004;). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev28:261–289 [CrossRef][PubMed]
    [Google Scholar]
  18. Dorman C. J..( 2004;). H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol2:391–400 [CrossRef][PubMed]
    [Google Scholar]
  19. Evans T. J., Ind A., Komitopoulou E., Salmond G. P..( 2010;). Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol109:505–514[PubMed]
    [Google Scholar]
  20. Fang F. C., Rimsky S..( 2008;). New insights into transcriptional regulation by H-NS. Curr Opin Microbiol11:113–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Francez-Charlot A., Laugel B., Van Gemert A., Dubarry N., Wiorowski F., Castanié-Cornet M. P., Gutierrez C., Cam K..( 2003;). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli.. Mol Microbiol49:823–832 [CrossRef][PubMed]
    [Google Scholar]
  22. Girgis H. S., Liu Y., Ryu W. S., Tavazoie S..( 2007;). A comprehensive genetic characterization of bacterial motility. PLoS Genet3:1644–1660 [CrossRef][PubMed]
    [Google Scholar]
  23. Hinton J. C., Santos D. S., Seirafi A., Hulton C. S., Pavitt G. D., Higgins C. F..( 1992;). Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium.. Mol Microbiol6:2327–2337 [CrossRef][PubMed]
    [Google Scholar]
  24. Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J. P., Danchin A., Bertin P..( 2001;). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol40:20–36 [CrossRef][PubMed]
    [Google Scholar]
  25. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S..( 1996;). Regulation of pectinolysis in Erwinia chrysanthemi.. Annu Rev Microbiol50:213–257 [CrossRef][PubMed]
    [Google Scholar]
  26. Jones S., Yu B., Bainton N. J., Birdsall M., Bycroft B. W., Chhabra S. R., Cox A. J., Golby P., Reeves P. J..& other authors ( 1993;). The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa.. EMBO J12:2477–2482[PubMed]
    [Google Scholar]
  27. Kearns D. B..( 2010;). A field guide to bacterial swarming motility. Nat Rev Microbiol8:634–644 [CrossRef][PubMed]
    [Google Scholar]
  28. Lindum P. W., Anthoni U., Christophersen C., Eberl L., Molin S., Givskov M..( 1998;). N-Acyl-l-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol180:6384–6388[PubMed]
    [Google Scholar]
  29. Majdalani N., Gottesman S..( 2005;). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol59:379–405 [CrossRef][PubMed]
    [Google Scholar]
  30. Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S. V..& other authors ( 2012;). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol13:614–629 [CrossRef][PubMed]
    [Google Scholar]
  31. Marolda C. L., Valvano M. A..( 1995;). Genetic analysis of the dTDP-rhamnose biosynthesis region of the Escherichia coli VW187 (O7:K1) rfb gene cluster: identification of functional homologs of rfbB and rfbA in the rff cluster and correct location of the rffE gene. J Bacteriol177:5539–5546[PubMed]
    [Google Scholar]
  32. Matsuyama T., Kaneda K., Ishizuka I., Toida T., Yano I..( 1990;). Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea.. J Bacteriol172:3015–3022[PubMed]
    [Google Scholar]
  33. Mole B. M., Baltrus D. A., Dangl J. L., Grant S. R..( 2007;). Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol15:363–371 [CrossRef][PubMed]
    [Google Scholar]
  34. Monson R., Burr T., Carlton T., Liu H., Hedley P., Toth I., Salmond G. P..( 2013;). Identification of genes in the VirR regulon of Pectobacterium atrosepticum and characterization of their roles in quorum sensing-dependent virulence. Environ Microbiol15:687–701 [CrossRef][PubMed]
    [Google Scholar]
  35. Morgenstein R. M., Clemmer K. M., Rather P. N..( 2010;). Loss of the waaL O-antigen ligase prevents surface activation of the flagellar gene cascade in Proteus mirabilis.. J Bacteriol192:3213–3221 [CrossRef][PubMed]
    [Google Scholar]
  36. Partridge J. D., Harshey R. M..( 2013;). Swarming: flexible roaming plans. J Bacteriol195:909–918 [CrossRef][PubMed]
    [Google Scholar]
  37. Pérez-Mendoza D., Coulthurst S. J., Sanjuán J., Salmond G. P..( 2011a;). N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology157:3340–3348 [CrossRef][PubMed]
    [Google Scholar]
  38. Pérez-Mendoza D., Coulthurst S. J., Humphris S., Campbell E., Welch M., Toth I. K., Salmond G. P..( 2011b;). A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Mol Microbiol82:719–733 [CrossRef][PubMed]
    [Google Scholar]
  39. Pirhonen M., Flego D., Heikinheimo R., Palva E. T..( 1993;). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.. EMBO J12:2467–2476[PubMed]
    [Google Scholar]
  40. Reyes R. E., González C. R., Jiménez R. C., Herrera M. O., Andrade A. A..( 2012;). Mechanisms of O-antigen structural variation of bacterial lipopolysaccharide (LPS). The Complex World of Polysaccharides Karunaratne D. N.. InTech;www.intechopen.com
    [Google Scholar]
  41. Shih Y. L., Harris S. J., Borner G., Rivet M. M., Salmond G. P..( 1999;). The hexY genes of Erwinia carotovora ssp. carotovora and ssp. atroseptica encode novel proteins that regulate virulence and motility co-ordinately. Environ Microbiol1:535–547 [CrossRef][PubMed]
    [Google Scholar]
  42. Smith D., Wang J. H., Swatton J. E., Davenport P., Price B., Mikkelsen H., Stickland H., Nishikawa K., Gardiol N..& other authors ( 2006;). Variations on a theme: diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in gram-negative bacteria. Sci Prog89:167–211 [CrossRef][PubMed]
    [Google Scholar]
  43. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P..( 1999;). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol181:7500–7508[PubMed]
    [Google Scholar]
  44. Toguchi A., Siano M., Burkart M., Harshey R. M..( 2000;). Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. J Bacteriol182:6308–6321 [CrossRef][PubMed]
    [Google Scholar]
  45. Williamson N. R., Fineran P. C., Ogawa W., Woodley L. R., Salmond G. P..( 2008;). Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia.. Environ Microbiol10:1202–1217 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070748-0
Loading
/content/journal/micro/10.1099/mic.0.070748-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error