1887

Abstract

is a highly infectious facultative intracellular bacterium and aetiological agent of tularaemia. The conserved hypothetical lipoprotein with homology to thiol/disulphide oxidoreductase proteins (FtDsbA) is an essential virulence factor in . Its protein sequence has two different domains: the DsbA_Com1_like domain (DSBA), with the highly conserved catalytically active site CXXC and -proline residue; and the domain amino-terminal to FKBP-type peptidyl-prolyl isomerases (FKBP_N). To establish the role of both domains in tularaemia infection models, site-directed and deletion mutagenesis affecting the active site (AXXA), the -proline (P286T) and the FKBP_N domain (ΔFKBP_N) were performed. The generated mutations led to high attenuation with the ability to induce full or partial host protective immunity. Recombinant protein analysis revealed that the active site CXXC as well as the -proline residue and the FKBP_N domain are necessary for correct thiol/disulphide oxidoreductase activity. By contrast, only the DSBA domain (and not the FKBP_N domain) seems to be responsible for the chaperone activity of the FtDsbA protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070516-0
2013-11-01
2020-11-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2364.html?itemId=/content/journal/micro/10.1099/mic.0.070516-0&mimeType=html&fmt=ahah

References

  1. Arié J. P., Sassoon N., Betton J. M..( 2001;). Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol Microbiol39:199–210 [CrossRef][PubMed]
    [Google Scholar]
  2. Bessette P. H., Qiu J., Bardwell J. C., Swartz J. R., Georgiou G..( 2001;). Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J Bacteriol183:980–988 [CrossRef][PubMed]
    [Google Scholar]
  3. Bönquist L., Lindgren H., Golovliov I., Guina T., Sjöstedt A..( 2008;). MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun76:3502–3510 [CrossRef][PubMed]
    [Google Scholar]
  4. Buchner J., Grallert H., Jakob U..( 1998;). Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol290:323–338 [CrossRef][PubMed]
    [Google Scholar]
  5. Burall L. S., Harro J. M., Li X., Lockatell C. V., Himpsl S. D., Hebel J. R., Johnson D. E., Mobley H. L. T..( 2004;). Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun72:2922–2938 [CrossRef][PubMed]
    [Google Scholar]
  6. Celli J..( 2008;). Intracellular localization of Brucella abortus and Francisella tularensis in primary murine macrophages. Methods Mol Biol431:133–145[PubMed]
    [Google Scholar]
  7. Chamberlain R. E..( 1965;). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol13:232–235[PubMed]
    [Google Scholar]
  8. Charbonnier J. B., Belin P., Moutiez M., Stura E. A., Quéméneur E..( 1999;). On the role of the cis-proline residue in the active site of DsbA. Protein Sci8:96–105 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen J., Song J. L., Zhang S., Wang Y., Cui D. F., Wang C. C..( 1999;). Chaperone activity of DsbC. J Biol Chem274:19601–19605 [CrossRef][PubMed]
    [Google Scholar]
  10. Chivers P. T., Prehoda K. E., Raines R. T..( 1997;). The CXXC motif: a rheostat in the active site. Biochemistry36:4061–4066 [CrossRef][PubMed]
    [Google Scholar]
  11. Ha U.-H., Wang Y., Jin S..( 2003;). DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect Immun71:1590–1595 [CrossRef][PubMed]
    [Google Scholar]
  12. Hendrix L. R., Mallavia L. P., Samuel J. E..( 1993;). Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1. Infect Immun61:470–477[PubMed]
    [Google Scholar]
  13. Heras B., Totsika M., Jarrott R., Shouldice S. R., Guncar G., Achard M. E. S., Wells T. J., Argente M. P., McEwan A. G., Schembri M. A..( 2010;). Structural and functional characterization of three DsbA paralogues from Salmonella enterica serovar Typhimurium. J Biol Chem285:18423–18432 [CrossRef][PubMed]
    [Google Scholar]
  14. Holmgren A..( 1979;). Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem254:9627–9632[PubMed]
    [Google Scholar]
  15. Jameson-Lee M., Garduño R. A., Hoffman P. S..( 2011;). DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol Microbiol80:835–852 [CrossRef][PubMed]
    [Google Scholar]
  16. Jänsch L., Kruft V., Schmitz U. K., Braun H. P..( 1996;). New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J9:357–368 [CrossRef][PubMed]
    [Google Scholar]
  17. Kadokura H., Tian H., Zander T., Bardwell J. C. A., Beckwith J..( 2004;). Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science303:534–537 [CrossRef][PubMed]
    [Google Scholar]
  18. Köhler R., Fanghänel J., König B., Lüneberg E., Frosch M., Rahfeld J.-U., Hilgenfeld R., Fischer G., Hacker J., Steinert M..( 2003;). Biochemical and functional analyses of the Mip protein: influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila. Infect Immun71:4389–4397 [CrossRef][PubMed]
    [Google Scholar]
  19. Lafaye C., Iwema T., Carpentier P., Jullian-Binard C., Kroll J. S., Collet J.-F., Serre L..( 2009;). Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis. J Mol Biol392:952–966 [CrossRef][PubMed]
    [Google Scholar]
  20. Liu X., Wang C. C..( 2001;). Disulfide-dependent folding and export of Escherichia coli DsbC. J Biol Chem276:1146–1151 [CrossRef][PubMed]
    [Google Scholar]
  21. Martin J. L..( 1995;). Thioredoxin—a fold for all reasons. Structure3:245–250 [CrossRef][PubMed]
    [Google Scholar]
  22. Miki T., Okada N., Danbara H..( 2004;). Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem279:34631–34642 [CrossRef][PubMed]
    [Google Scholar]
  23. Qin A., Scott D. W., Thompson J. A., Mann B. J..( 2009;). Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun77:152–161 [CrossRef][PubMed]
    [Google Scholar]
  24. Qin A., Scott D. W., Rabideau M. M., Moore E. A., Mann B. J..( 2011;). Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis. PLoS ONE6:e24611 [CrossRef][PubMed]
    [Google Scholar]
  25. Riboldi-Tunnicliffe A., König B., Jessen S., Weiss M. S., Rahfeld J., Hacker J., Fischer G., Hilgenfeld R..( 2001;). Crystal structure of Mip, a prolylisomerase from Legionella pneumophila. Nat Struct Biol8:779–783 [CrossRef][PubMed]
    [Google Scholar]
  26. Rodriguez S. A., Yu J.-J., Davis G., Arulanandam B. P., Klose K. E..( 2008;). Targeted inactivation of Francisella tularensis genes by group II introns. Appl Environ Microbiol74:2619–2626 [CrossRef][PubMed]
    [Google Scholar]
  27. Saul F. A., Arié J.-P., Vulliez-le Normand B., Kahn R., Betton J.-M., Bentley G. A..( 2004;). Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J Mol Biol335:595–608 [CrossRef][PubMed]
    [Google Scholar]
  28. Schägger H., von Jagow G..( 1991;). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem199:223–231 [CrossRef][PubMed]
    [Google Scholar]
  29. Shao F., Bader M. W., Jakob U., Bardwell J. C..( 2000;). DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem275:13349–13352 [CrossRef][PubMed]
    [Google Scholar]
  30. Stenson T. H., Weiss A. A..( 2002;). DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect Immun70:2297–2303 [CrossRef][PubMed]
    [Google Scholar]
  31. Straskova A., Pavkova I., Link M., Forslund A.-L., Kuoppa K., Noppa L., Kroca M., Fucikova A., Klimentova J..& other authors ( 2009;). Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res8:5336–5346 [CrossRef][PubMed]
    [Google Scholar]
  32. Thakran S., Li H., Lavine C. L., Miller M. A., Bina J. E., Bina X. R., Re F..( 2008;). Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J Biol Chem283:3751–3760 [CrossRef][PubMed]
    [Google Scholar]
  33. Thomas R. M., Twine S. M., Fulton K. M., Tessier L., Kilmury S. L. N., Ding W., Harmer N., Michell S. L., Oyston P. C. F..& other authors ( 2011;). Glycosylation of DsbA in Francisella tularensis subsp. tularensis. J Bacteriol193:5498–5509 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang C. C., Tsou C. L..( 1993;). Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J7:1515–1517[PubMed]
    [Google Scholar]
  35. Yu J., Oragui E. E., Stephens A., Kroll J. S., Venkatesan M. M..( 2001;). Inactivation of DsbA alters the behaviour of Shigella flexneri towards murine and human-derived macrophage-like cells. FEMS Microbiol Lett204:81–88 [CrossRef][PubMed]
    [Google Scholar]
  36. Zheng W. D., Quan H., Song J. L., Yang S. L., Wang C. C..( 1997;). Does DsbA have chaperone-like activity?. Arch Biochem Biophys337:326–331 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070516-0
Loading
/content/journal/micro/10.1099/mic.0.070516-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error