1887

Abstract

Bacillithiol is the major low molecular mass thiol produced by many firmicutes bacteria, including the model organism and pathogens such as and . We have previously shown that four genes (, , and ) are involved in bacillithiol biosynthesis. Here, we report that these four genes are encoded within three, unlinked operons all expressed from canonical σ-dependent promoters as determined by 5′RACE (rapid amplification of cDNA ends). The and genes are embedded within a seven-gene operon additionally including , encoding methylglyoxal synthase, and the essential genes and , encoding tRNA nucleotidyltransferase (CCA transferase) and biotin-protein ligase, respectively. The gene is co-transcribed with unknown function genes, while is expressed both as part of a two-gene operon (with the upstream putative pantothenate biosynthesis gene ) and from its own promoter. All three operons are expressed at a reduced level in an null mutant, consistent with a direct role of Spx as a transcriptional activator for these operons, and all three operons are induced by the thiol oxidant diamide. In contrast with other Spx-regulated genes characterized to date, the effects of Spx on basal expression and diamide-stimulated expression appear to be independent of Cys10 in the redox centre of Spx. Consistent with the role of Spx as an activator of bacillithiol biosynthetic genes, cellular levels of bacillithiol are reduced several-fold in an null mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070482-0
2013-10-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2025.html?itemId=/content/journal/micro/10.1099/mic.0.070482-0&mimeType=html&fmt=ahah

References

  1. Antelmann H., Helmann J. D.. ( 2011;). Thiol-based redox switches and gene regulation. Antioxid Redox Signal14:1049–1063 [CrossRef][PubMed]
    [Google Scholar]
  2. Bower S., Perkins J., Yocum R. R., Serror P., Sorokin A., Rahaim P., Howitt C. L., Prasad N., Ehrlich S. D., Pero J.. ( 1995;). Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J Bacteriol177:2572–2575[PubMed]
    [Google Scholar]
  3. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D.. ( 1998;). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198 [CrossRef][PubMed]
    [Google Scholar]
  4. Chi B. K., Gronau K., Mäder U., Hessling B., Becher D., Antelmann H.. ( 2011;). S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics10:009506[PubMed][CrossRef]
    [Google Scholar]
  5. Chi B. K., Roberts A. A., Huyen T. T., Bäsell K., Becher D., Albrecht D., Hamilton C. J., Antelmann H.. ( 2013;). S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in firmicutes bacteria. Antioxid Redox Signal18:1273–1295 [CrossRef][PubMed]
    [Google Scholar]
  6. Eiamphungporn W., Helmann J. D.. ( 2008;). The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol67:830–848 [CrossRef][PubMed]
    [Google Scholar]
  7. Fahey R. C.. ( 2013;). Glutathione analogs in prokaryotes. Biochim Biophys Acta1830:3182–3198 [CrossRef][PubMed]
    [Google Scholar]
  8. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B.. ( 1978;). Occurrence of glutathione in bacteria. J Bacteriol133:1126–1129[PubMed]
    [Google Scholar]
  9. Fuangthong M., Helmann J. D.. ( 2002;). The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci U S A99:6690–6695 [CrossRef][PubMed]
    [Google Scholar]
  10. Gaballa A., Newton G. L., Antelmann H., Parsonage D., Upton H., Rawat M., Claiborne A., Fahey R. C., Helmann J. D.. ( 2010;). Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A107:6482–6486 [CrossRef][PubMed]
    [Google Scholar]
  11. Helmann J. D.. ( 1995;). Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res23:2351–2360 [CrossRef][PubMed]
    [Google Scholar]
  12. Helmann J. D.. ( 2011;). Bacillithiol, a new player in bacterial redox homeostasis. Antioxid Redox Signal15:123–133 [CrossRef][PubMed]
    [Google Scholar]
  13. Helmann J. D., Wu M. F., Gaballa A., Kobel P. A., Morshedi M. M., Fawcett P., Paddon C.. ( 2003;). The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol185:243–253 [CrossRef][PubMed]
    [Google Scholar]
  14. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  15. Hong M., Fuangthong M., Helmann J. D., Brennan R. G.. ( 2005;). Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell20:131–141 [CrossRef][PubMed]
    [Google Scholar]
  16. Huang C. S., Moore W. R., Meister A.. ( 1988;). On the active site thiol of gamma-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation. Proc Natl Acad Sci U S A85:2464–2468 [CrossRef][PubMed]
    [Google Scholar]
  17. Jothivasan V. K., Hamilton C. J.. ( 2008;). Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep25:1091–1117 [CrossRef][PubMed]
    [Google Scholar]
  18. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S.. & other authors ( 2003;). Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A100:4678–4683 [CrossRef][PubMed]
    [Google Scholar]
  19. Lamers A. P., Keithly M. E., Kim K., Cook P. D., Stec D. F., Hines K. M., Sulikowski G. A., Armstrong R. N.. ( 2012;). Synthesis of bacillithiol and the catalytic selectivity of FosB-type fosfomycin resistance proteins. Org Lett14:5207–5209 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee J. W., Helmann J. D.. ( 2006;). The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature440:363–367 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee E. J., Karoonuthaisiri N., Kim H. S., Park J. H., Cha C. J., Kao C. M., Roe J. H.. ( 2005;). A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor . Mol Microbiol57:1252–1264 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee J. W., Soonsanga S., Helmann J. D.. ( 2007;). A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci U S A104:8743–8748 [CrossRef][PubMed]
    [Google Scholar]
  23. Masip L., Veeravalli K., Georgiou G.. ( 2006;). The many faces of glutathione in bacteria. Antioxid Redox Signal8:753–762 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Nakano S., Küster-Schöck E., Grossman A. D., Zuber P.. ( 2003;). Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis . Proc Natl Acad Sci U S A100:13603–13608 [CrossRef][PubMed]
    [Google Scholar]
  26. Nakano S., Erwin K. N., Ralle M., Zuber P.. ( 2005;). Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol Microbiol55:498–510 [CrossRef][PubMed]
    [Google Scholar]
  27. Nakano M. M., Lin A., Zuber C. S., Newberry K. J., Brennan R. G., Zuber P.. ( 2010;). Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS ONE5:e8664 [CrossRef][PubMed]
    [Google Scholar]
  28. Newton G. L., Koledin T., Gorovitz B., Rawat M., Fahey R. C., Av-Gay Y.. ( 2003;). The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J Bacteriol185:3476–3479 [CrossRef][PubMed]
    [Google Scholar]
  29. Newton G. L., Buchmeier N., Fahey R. C.. ( 2008;). Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria . Microbiol Mol Biol Rev72:471–494 [CrossRef][PubMed]
    [Google Scholar]
  30. Newton G. L., Rawat M., La Clair J. J., Jothivasan V. K., Budiarto T., Hamilton C. J., Claiborne A., Helmann J. D., Fahey R. C.. ( 2009;). Bacillithiol is an antioxidant thiol produced in Bacilli . Nat Chem Biol5:625–627 [CrossRef][PubMed]
    [Google Scholar]
  31. Newton G. L., Fahey R. C., Rawat M.. ( 2012;). Detoxification of toxins by bacillithiol in Staphylococcus aureus . Microbiology158:1117–1126 [CrossRef][PubMed]
    [Google Scholar]
  32. Nicely N. I., Parsonage D., Paige C., Newton G. L., Fahey R. C., Leonardi R., Jackowski S., Mallett T. C., Claiborne A.. ( 2007;). Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology. Biochemistry46:3234–3245 [CrossRef][PubMed]
    [Google Scholar]
  33. Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M.. & other authors ( 2012;). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis . Science335:1103–1106 [CrossRef][PubMed]
    [Google Scholar]
  34. Park J. H., Roe J. H.. ( 2008;). Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor . Mol Microbiol68:861–870 [CrossRef][PubMed]
    [Google Scholar]
  35. Parsonage D., Newton G. L., Holder R. C., Wallace B. D., Paige C., Hamilton C. J., Dos Santos P. C., Redinbo M. R., Reid S. D., Claiborne A.. ( 2010;). Characterization of the N-acetyl-α-d-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis . Biochemistry49:8398–8414 [CrossRef][PubMed]
    [Google Scholar]
  36. Rasmussen S., Nielsen H. B., Jarmer H.. ( 2009;). The transcriptionally active regions in the genome of Bacillus subtilis . Mol Microbiol73:1043–1057 [CrossRef][PubMed]
    [Google Scholar]
  37. Rawat M., Av-Gay Y.. ( 2007;). Mycothiol-dependent proteins in actinomycetes. FEMS Microbiol Rev31:278–292 [CrossRef][PubMed]
    [Google Scholar]
  38. Raynal L. C., Krisch H. M., Carpousis A. J.. ( 1998;). The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme. J Bacteriol180:6276–6282[PubMed]
    [Google Scholar]
  39. Reyes D. Y., Zuber P.. ( 2008;). Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation. Mol Microbiol69:765–779 [CrossRef][PubMed]
    [Google Scholar]
  40. Roberts A. A., Sharma S. V., Strankman A. W., Duran S. R., Rawat M., Hamilton C. J.. ( 2013;). Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus . Biochem J451:69–79 [CrossRef][PubMed]
    [Google Scholar]
  41. Rochat T., Nicolas P., Delumeau O., Rabatinová A., Korelusová J., Leduc A., Bessières P., Dervyn E., Krásny L., Noirot P.. ( 2012;). Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis . Nucleic Acids Res40:9571–9583 [CrossRef][PubMed]
    [Google Scholar]
  42. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sareen D., Steffek M., Newton G. L., Fahey R. C.. ( 2002;). ATP-dependent l-cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry41:6885–6890 [CrossRef][PubMed]
    [Google Scholar]
  44. Sharma S. V., Jothivasan V. K., Newton G. L., Upton H., Wakabayashi J. I., Kane M. G., Roberts A. A., Rawat M., La Clair J. J., Hamilton C. J.. ( 2011;). Chemical and chemoenzymatic syntheses of bacillithiol: a unique low-molecular-weight thiol amongst low G + C Gram-positive bacteria. Angew Chem Int Ed Engl50:7101–7104 [CrossRef][PubMed]
    [Google Scholar]
  45. Soonsanga S., Fuangthong M., Helmann J. D.. ( 2007;). Mutational analysis of active site residues essential for sensing of organic hydroperoxides by Bacillus subtilis OhrR. J Bacteriol189:7069–7076 [CrossRef][PubMed]
    [Google Scholar]
  46. Soonsanga S., Lee J. W., Helmann J. D.. ( 2008;). Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR. Mol Microbiol68:978–986 [CrossRef][PubMed]
    [Google Scholar]
  47. Stülke J., Hanschke R., Hecker M.. ( 1993;). Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol139:2041–2045 [CrossRef][PubMed]
    [Google Scholar]
  48. Upton H., Newton G. L., Gushiken M., Lo K., Holden D., Fahey R. C., Rawat M.. ( 2012;). Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis . FEBS Lett586:1004–1008 [CrossRef][PubMed]
    [Google Scholar]
  49. Vagner V., Dervyn E., Ehrlich S. D.. ( 1998;). A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104 [CrossRef][PubMed]
    [Google Scholar]
  50. Van Laer K., Hamilton C. J., Messens J.. ( 2013;). Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid Redox Signal18:1642–1653 [CrossRef][PubMed]
    [Google Scholar]
  51. Wetzstein M., Völker U., Dedio J., Löbau S., Zuber U., Schiesswohl M., Herget C., Hecker M., Schumann W.. ( 1992;). Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis . J Bacteriol174:3300–3310[PubMed]
    [Google Scholar]
  52. Zuber P.. ( 2004;). Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol186:1911–1918 [CrossRef][PubMed]
    [Google Scholar]
  53. Zuber P.. ( 2009;). Management of oxidative stress in Bacillus . Annu Rev Microbiol63:575–597 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070482-0
Loading
/content/journal/micro/10.1099/mic.0.070482-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error