1887

Abstract

Isoprenoid lipid carriers are essential in protein glycosylation and bacterial cell envelope biosynthesis. The enzymes involved in their metabolism (synthases, kinases and phosphatases) are therefore critical to cell viability. In this review, we focus on two broad groups of isoprenoid pyrophosphate phosphatases. One group, containing phosphatidic acid phosphatase motifs, includes the eukaryotic dolichyl pyrophosphate phosphatases and proposed recycling bacterial undecaprenol pyrophosphate phosphatases, PgpB, YbjB and YeiU/LpxT. The second group comprises the bacterial undecaprenol pyrophosphate phosphatase, BacA/UppP, responsible for initial formation of undecaprenyl phosphate, which we predict contains a tyrosine phosphate phosphatase motif resembling that of the tumour suppressor, phosphatase and tensin homologue (PTEN). Based on protein sequence alignments across species and 2D structure predictions, we propose catalytic and lipid recognition motifs unique to BacA/UppP enzymes. The verification of our proposed active-site residues would provide new strategies for the development of substrate-specific inhibitors which mimic both the lipid and pyrophosphate moieties, leading to the development of novel antimicrobial agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070474-0
2013-12-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2444.html?itemId=/content/journal/micro/10.1099/mic.0.070474-0&mimeType=html&fmt=ahah

References

  1. Adair W. L. Jr, Cafmeyer N., Keller R. K.. ( 1984;). Solubilization and characterization of the long chain prenyltransferase involved in dolichyl phosphate biosynthesis. J Biol Chem259:4441–4446[PubMed]
    [Google Scholar]
  2. Albright C. F., Orlean P., Robbins P. W.. ( 1989;). A 13-amino acid peptide in three yeast glycosyltransferases may be involved in dolichol recognition. Proc Natl Acad Sci U S A86:7366–7369 [CrossRef][PubMed]
    [Google Scholar]
  3. Alicea-Velazquez N. L., Boggon T. J.. ( 2013;). SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Protein Pept Lett20:1039–1048 [CrossRef][PubMed]
    [Google Scholar]
  4. Allen C. M. Jr, Kalin J. R., Sack J., Verizzo D.. ( 1978;). CTP-dependent dolichol phosphorylation by mammalian cell homogenates. Biochemistry17:5020–5026 [CrossRef][PubMed]
    [Google Scholar]
  5. Allen C. M., Muth J. D., Gildersleeve N.. ( 1982;). Extraction and detergent/lipid activation of dolichol kinase. Biochim Biophys Acta712:33–41 [CrossRef][PubMed]
    [Google Scholar]
  6. Barr A. J., Ugochukwu E., Lee W. H., King O. N., Filippakopoulos P., Alfano I., Savitsky P., Burgess-Brown N. A., Müller S., Knapp S.. ( 2009;). Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell136:352–363 [CrossRef][PubMed]
    [Google Scholar]
  7. Bernard R., Joseph P., Guiseppi A., Chippaux M., Denizot F.. ( 2003;). YtsCD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis . FEMS Microbiol Lett228:93–97 [CrossRef][PubMed]
    [Google Scholar]
  8. Bernard R., El Ghachi M., Mengin-Lecreulx D., Chippaux M., Denizot F.. ( 2005;). BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. J Biol Chem280:28852–28857 [CrossRef][PubMed]
    [Google Scholar]
  9. Bouhss A., Trunkfield A. E., Bugg T. D., Mengin-Lecreulx D.. ( 2008;). The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev32:208–233 [CrossRef][PubMed]
    [Google Scholar]
  10. Burgos J., Hemming F. W., Pennock J. F., Morton R. A.. ( 1963;). Dolichol: a naturally-occurring C100 isoprenoid alcohol. Biochem J88:470–482[PubMed]
    [Google Scholar]
  11. Cain B. D., Norton P. J., Eubanks W., Nick H. S., Allen C. M.. ( 1993;). Amplification of the bacA gene confers bacitracin resistance to Escherichia coli . J Bacteriol175:3784–3789[PubMed]
    [Google Scholar]
  12. Calo D., Kaminski L., Eichler J.. ( 2010;). Protein glycosylation in Archaea: sweet and extreme. Glycobiology20:1065–1076 [CrossRef][PubMed]
    [Google Scholar]
  13. Cantagrel V., Lefeber D. J.. ( 2011;). From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J Inherit Metab Dis34:859–867 [CrossRef][PubMed]
    [Google Scholar]
  14. Cantagrel V., Lefeber D. J., Ng B. G., Guan Z., Silhavy J. L., Bielas S. L., Lehle L., Hombauer H., Adamowicz M.. & other authors ( 2010;). SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell142:203–217 [CrossRef][PubMed]
    [Google Scholar]
  15. Carroll K. K., Guthrie N., Ravi K.. ( 1992;). Dolichol: function, metabolism, and accumulation in human tissues. Biochem Cell Biol70:382–384 [CrossRef][PubMed]
    [Google Scholar]
  16. Chalker A. F., Ingraham K. A., Lunsford R. D., Bryant A. P., Bryant J., Wallis N. G., Broskey J. P., Pearson S. C., Holmes D. J.. ( 2000;). The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumoniae and Staphylococcus aureus, is also required for virulence. Microbiology146:1547–1553[PubMed]
    [Google Scholar]
  17. Chojnacki T., Dallner G.. ( 1988;). The biological role of dolichol. Biochem J251:1–9[PubMed]
    [Google Scholar]
  18. Datta A. K., Lehrman M. A.. ( 1993;). Both potential dolichol recognition sequences of hamster GlcNAc-1-phosphate transferase are necessary for normal enzyme function. J Biol Chem268:12663–12668[PubMed]
    [Google Scholar]
  19. de Kruijff B., van Dam V., Breukink E.. ( 2008;). Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot Essent Fatty Acids79:117–121 [CrossRef][PubMed]
    [Google Scholar]
  20. Denecke J., Kranz C.. ( 2009;). Hypoglycosylation due to dolichol metabolism defects. Biochim Biophys Acta1792:888–895 [CrossRef][PubMed]
    [Google Scholar]
  21. Dillon D. A., Wu W.-I., Riedel B., Wissing J. B., Dowhan W., Carman G. M.. ( 1996;). The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem271:30548–30553 [CrossRef][PubMed]
    [Google Scholar]
  22. Dixon J. E.. ( 1995;). Structure and catalytic properties of protein tyrosine phosphatases. Ann N Y Acad Sci766:18–22 [CrossRef][PubMed]
    [Google Scholar]
  23. Ekström T. J., Chojnacki T., Dallner G.. ( 1984;). Metabolic labeling of dolichol and dolichyl phosphate in isolate hepatocytes. J Biol Chem259:10460–10468[PubMed]
    [Google Scholar]
  24. Ekström T. J., Chojnacki T., Dallner G.. ( 1987;). The alpha-saturation and terminal events in dolichol biosynthesis. J Biol Chem262:4090–4097[PubMed]
    [Google Scholar]
  25. El Ghachi M., Bouhss A., Blanot D., Mengin-Lecreulx D.. ( 2004;). The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem279:30106–30113 [CrossRef][PubMed]
    [Google Scholar]
  26. El Ghachi M., Derbise A., Bouhss A., Mengin-Lecreulx D.. ( 2005;). Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli . J Biol Chem280:18689–18695 [CrossRef][PubMed]
    [Google Scholar]
  27. Endo S., Zhang Y. W., Takahashi S., Koyama T.. ( 2003;). Identification of human dehydrodolichyl diphosphate synthase gene. Biochim Biophys Acta1625:291–295 [CrossRef][PubMed]
    [Google Scholar]
  28. Ericsson J., Appelkvist E. L., Runquist M., Dallner G.. ( 1993;). Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochimie75:167–173 [CrossRef][PubMed]
    [Google Scholar]
  29. Fernandez F., Rush J. S., Toke D. A., Han G. S., Quinn J. E., Carman G. M., Choi J. Y., Voelker D. R., Aebi M., Waechter C. J.. ( 2001;). The CWH8 gene encodes a dolichyl pyrophosphate phosphatase with a luminally oriented active site in the endoplasmic reticulum of Saccharomyces cerevisiae . J Biol Chem276:41455–41464 [CrossRef][PubMed]
    [Google Scholar]
  30. Fernandez F., Shridas P., Jiang S., Aebi M., Waechter C. J.. ( 2002;). Expression and characterization of a human cDNA that complements the temperature-sensitive defect in dolichol kinase activity in the yeast sec59-1 mutant: the enzymatic phosphorylation of dolichol and diacylglycerol are catalyzed by separate CTP-mediated kinase activities in Saccharomyces cerevisiae . Glycobiology12:555–562 [CrossRef][PubMed]
    [Google Scholar]
  31. Funk C. R., Zimniak L., Dowhan W.. ( 1992;). The pgpA and pgpB genes of Escherichia coli are not essential: evidence for a third phosphatidylglycerophosphate phosphatase. J Bacteriol174:205–213[PubMed]
    [Google Scholar]
  32. Goldstein J. L., Brown M. S.. ( 1990;). Regulation of the mevalonate pathway. Nature343:425–430 [CrossRef][PubMed]
    [Google Scholar]
  33. Gough D. P., Hemming F. W.. ( 1970;). The characterization and stereochemistry of biosynthesis of dolichols in rat liver. Biochem J118:163–166[PubMed]
    [Google Scholar]
  34. Gründahl J. E., Guan Z., Rust S., Reunert J., Müller B., Du Chesne I., Zerres K., Rudnik-Schöneborn S., Ortiz-Brüchle N.. & other authors ( 2012;). Life with too much polyprenol: polyprenol reductase deficiency. Mol Genet Metab105:642–651 [CrossRef][PubMed]
    [Google Scholar]
  35. Guo R. T., Ko T. P., Chen A. P., Kuo C. J., Wang A. H., Liang P. H.. ( 2005;). Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem280:20762–20774 [CrossRef][PubMed]
    [Google Scholar]
  36. Hartley M. D., Imperiali B.. ( 2012;). At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys517:83–97 [CrossRef][PubMed]
    [Google Scholar]
  37. Hartley M. D., Larkin A., Imperiali B.. ( 2008;). Chemoenzymatic synthesis of polyprenyl phosphates. Bioorg Med Chem16:5149–5156 [CrossRef][PubMed]
    [Google Scholar]
  38. Helenius A., Aebi M.. ( 2004;). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem73:1019–1049 [CrossRef][PubMed]
    [Google Scholar]
  39. Heller L., Orlean P., Adair W. L. Jr. ( 1992;). Saccharomyces cerevisiae sec59 cells are deficient in dolichol kinase activity. Proc Natl Acad Sci U S A89:7013–7016 [CrossRef][PubMed]
    [Google Scholar]
  40. Hemrika W., Renirie R., Dekker H. L., Barnett P., Wever R.. ( 1997;). From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A94:2145–2149 [CrossRef][PubMed]
    [Google Scholar]
  41. Hendriks W. J., Elson A., Harroch S., Pulido R., Stoker A., den Hertog J.. ( 2013;). Protein tyrosine phosphatases in health and disease. FEBS J280:708–730 [CrossRef][PubMed]
    [Google Scholar]
  42. Hirokawa T., Boon-Chieng S., Mitaku S.. ( 1998;). sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics14:378–379 [CrossRef][PubMed]
    [Google Scholar]
  43. Hitchen P. G., Dell A.. ( 2006;). Bacterial glycoproteomics. Microbiology152:1575–1580 [CrossRef][PubMed]
    [Google Scholar]
  44. Hofmann K., Stoffel W.. ( 1993;). TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler374:166
    [Google Scholar]
  45. Hunter W. N.. ( 2007;). The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem282:21573–21577 [CrossRef][PubMed]
    [Google Scholar]
  46. Ivanov S. S., Charron G., Hang H. C., Roy C. R.. ( 2010;). Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem285:34686–34698 [CrossRef][PubMed]
    [Google Scholar]
  47. Jerga A., Lu Y. J., Schujman G. E., de Mendoza D., Rock C. O.. ( 2007;). Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis . J Biol Chem282:21738–21745 [CrossRef][PubMed]
    [Google Scholar]
  48. Jones D. T., Taylor W. R., Thornton J. M.. ( 1994;). A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry33:3038–3049 [CrossRef][PubMed]
    [Google Scholar]
  49. Jones M. B., Rosenberg J. N., Betenbaugh M. J., Krag S. S.. ( 2009;). Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochim Biophys Acta1790:485–494 [CrossRef][PubMed]
    [Google Scholar]
  50. Juretić D., Zoranić L., Zucić D.. ( 2002;). Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comput Sci42:620–632 [CrossRef][PubMed]
    [Google Scholar]
  51. Kahrizi K., Hu C. H., Garshasbi M., Abedini S. S., Ghadami S., Kariminejad R., Ullmann R., Chen W., Ropers H. H.. & other authors ( 2011;). Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. Eur J Hum Genet19:115–117 [CrossRef][PubMed]
    [Google Scholar]
  52. Kapusta L., Zucker N., Frenckel G., Medalion B., Ben Gal T., Birk E., Mandel H., Nasser N., Morgenstern S.. & other authors ( 2013;). From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev18:187–196 [CrossRef][PubMed]
    [Google Scholar]
  53. Kasapkara C. S., Tümer L., Ezgü F. S., Hasanoğlu A., Race V., Matthijs G., Jaeken J.. ( 2012;). SRD5A3-CDG: a patient with a novel mutation. Eur J Paediatr Neurol16:554–556 [CrossRef][PubMed]
    [Google Scholar]
  54. Kranz C., Jungeblut C., Denecke J., Erlekotte A., Sohlbach C., Debus V., Kehl H. G., Harms E., Reith A.. & other authors ( 2007;). A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet80:433–440 [CrossRef][PubMed]
    [Google Scholar]
  55. Kumar M., Balaji P. V.. ( 2011;). Comparative genomics analysis of completely sequenced microbial genomes reveals the ubiquity of N-linked glycosylation in prokaryotes. Mol Biosyst7:1629–1645 [CrossRef][PubMed]
    [Google Scholar]
  56. Kuzuyama T.. ( 2002;). Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem66:1619–1627 [CrossRef][PubMed]
    [Google Scholar]
  57. Larkin A., Imperiali B.. ( 2011;). The expanding horizons of asparagine-linked glycosylation. Biochemistry50:4411–4426 [CrossRef][PubMed]
    [Google Scholar]
  58. Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., Dixon J. E., Pandolfi P., Pavletich N. P.. ( 1999;). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell99:323–334 [CrossRef][PubMed]
    [Google Scholar]
  59. Lefeber D. J., de Brouwer A. P., Morava E., Riemersma M., Schuurs-Hoeijmakers J. H., Absmanner B., Verrijp K., van den Akker W. M., Huijben K.. & other authors ( 2011;). Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet7:e1002427 [CrossRef][PubMed]
    [Google Scholar]
  60. Lovering A. L., Safadi S. S., Strynadka N. C.. ( 2012;). Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem81:451–478 [CrossRef][PubMed]
    [Google Scholar]
  61. Lu Y. H., Guan Z., Zhao J., Raetz C. R.. ( 2011;). Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli . J Biol Chem286:5506–5518 [CrossRef][PubMed]
    [Google Scholar]
  62. Mahapatra S., Yagi T., Belisle J. T., Espinosa B. J., Hill P. J., McNeil M. R., Brennan P. J., Crick D. C.. ( 2005;). Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol187:2747–2757 [CrossRef][PubMed]
    [Google Scholar]
  63. Möller S., Croning M. D., Apweiler R.. ( 2001;). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics17:646–653 [CrossRef][PubMed]
    [Google Scholar]
  64. Mookerjea S., Coolbear T., Sarkar M. L.. ( 1983;). Key role of dolichol phosphate in glycoprotein biosynthesis. Can J Biochem Cell Biol61:1032–1040 [CrossRef][PubMed]
    [Google Scholar]
  65. Morava E., Wevers R. A., Cantagrel V., Hoefsloot L. H., Al-Gazali L., Schoots J., van Rooij A., Huijben K., van Ravenswaaij-Arts C. M.. & other authors ( 2010;). A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain133:3210–3220 [CrossRef][PubMed]
    [Google Scholar]
  66. Neuwald A. F.. ( 1997;). An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci6:1764–1767 [CrossRef][PubMed]
    [Google Scholar]
  67. Nothaft H., Szymanski C. M.. ( 2010;). Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol8:765–778 [CrossRef][PubMed]
    [Google Scholar]
  68. Ohki R., Tateno K., Okada Y., Okajima H., Asai K., Sadaie Y., Murata M., Aiso T.. ( 2003;). A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. J Bacteriol185:51–59 [CrossRef][PubMed]
    [Google Scholar]
  69. Pasquier C., Hamodrakas S. J.. ( 1999;). An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng12:631–634 [CrossRef][PubMed]
    [Google Scholar]
  70. Pennock J. F., Hemming F. W., Morton R. A.. ( 1960;). Dolichol: a naturally occurring isoprenoid alcohol. Nature186:470–472 [CrossRef][PubMed]
    [Google Scholar]
  71. Podlesek Z., Comino A., Herzog-Velikonja B., Zgur-Bertok D., Komel R., Grabnar M.. ( 1995;). Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol16:969–976 [CrossRef][PubMed]
    [Google Scholar]
  72. Price C. T., Al-Quadan T., Santic M., Jones S. C., Abu Kwaik Y.. ( 2010;). Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila . J Exp Med207:1713–1726 [CrossRef][PubMed]
    [Google Scholar]
  73. Proteau P. J.. ( 2004;). 1-Deoxy-d-xylulose 5-phosphate reductoisomerase: an overview. Bioorg Chem32:483–493 [CrossRef][PubMed]
    [Google Scholar]
  74. Rebl A., Anders E., Wimmers K., Goldammer T.. ( 2009;). Characterization of dehydrodolichyl diphosphate synthase gene in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol152:260–265 [CrossRef][PubMed]
    [Google Scholar]
  75. Reusch V. M. Jr, Salton M. R. J.. ( 1984;). Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit Rev Microbiol11:129–155 [CrossRef][PubMed]
    [Google Scholar]
  76. Rush J. S., Cho S. K., Jiang S., Hofmann S. L., Waechter C. J.. ( 2002;). Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem277:45226–45234 [CrossRef][PubMed]
    [Google Scholar]
  77. Sagami H., Kurisaki A., Ogura K.. ( 1993;). Formation of dolichol from dehydrodolichol is catalyzed by NADPH-dependent reductase localized in microsomes of rat liver. J Biol Chem268:10109–10113[PubMed]
    [Google Scholar]
  78. Sagami H., Igarashi Y., Tateyama S., Ogura K., Roos J., Lennarz W. J.. ( 1996;). Enzymatic formation of dehydrodolichal and dolichal, new products related to yeast dolichol biosynthesis. J Biol Chem271:9560–9566 [CrossRef][PubMed]
    [Google Scholar]
  79. Schwarz F., Aebi M.. ( 2011;). Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol21:576–582 [CrossRef][PubMed]
    [Google Scholar]
  80. Sebti S. M.. ( 2005;). Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell7:297–300 [CrossRef][PubMed]
    [Google Scholar]
  81. Shridas P., Waechter C. J.. ( 2006;). Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J Biol Chem281:31696–31704 [CrossRef][PubMed]
    [Google Scholar]
  82. Shridas P., Rush J. S., Waechter C. J.. ( 2003;). Identification and characterization of a cDNA encoding a long-chain cis-isoprenyltranferase involved in dolichyl monophosphate biosynthesis in the ER of brain cells. Biochem Biophys Res Commun312:1349–1356 [CrossRef][PubMed]
    [Google Scholar]
  83. Skorupinska-Tudek K., Wojcik J., Swiezewska E.. ( 2008;). Polyisoprenoid alcohols – recent results of structural studies. Chem Rec8:33–45 [CrossRef][PubMed]
    [Google Scholar]
  84. Spyropoulos I. C., Liakopoulos T. D., Bagos P. G., Hamodrakas S. J.. ( 2004;). TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics20:3258–3260 [CrossRef][PubMed]
    [Google Scholar]
  85. Stukey J., Carman G. M.. ( 1997;). Identification of a novel phosphatase sequence motif. Protein Sci6:469–472 [CrossRef][PubMed]
    [Google Scholar]
  86. Surmacz L., Swiezewska E.. ( 2011;). Polyisoprenoids – secondary metabolites or physiologically important superlipids. Biochem Biophys Res Commun407:627–632 [CrossRef][PubMed]
    [Google Scholar]
  87. Swiezewska E., Danikiewicz W.. ( 2005;). Polyisoprenoids: structure, biosynthesis and function. Prog Lipid Res44:235–258 [CrossRef][PubMed]
    [Google Scholar]
  88. Swoboda J. G., Campbell J., Meredith T. C., Walker S.. ( 2010;). Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem11:35–45 [CrossRef][PubMed]
    [Google Scholar]
  89. Tabish S., Raza A., Nasir A., Zafar S., Bokhari H.. ( 2011;). Analysis of glycosylation motifs and glycosyltransferases in Bacteria and Archaea. Bioinformation6:191–195 [CrossRef][PubMed]
    [Google Scholar]
  90. Tatar L. D., Marolda C. L., Polischuk A. N., van Leeuwen D., Valvano M. A.. ( 2007;). An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology153:2518–2529 [CrossRef][PubMed]
    [Google Scholar]
  91. Teng K. H., Liang P. H.. ( 2012a;). Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: a cis-prenyltransferase for bacterial peptidoglycan biosynthesis. Bioorg Chem43:51–57 [CrossRef][PubMed]
    [Google Scholar]
  92. Teng K. H., Liang P. H.. ( 2012b;). Undecaprenyl diphosphate synthase, a cis-prenyltransferase synthesizing lipid carrier for bacterial cell wall biosynthesis. Mol Membr Biol29:267–273 [CrossRef][PubMed]
    [Google Scholar]
  93. Tonks N. K.. ( 2013;). Protein tyrosine phosphatases – from housekeeping enzymes to master regulators of signal transduction. FEBS J280:346–378 [CrossRef][PubMed]
    [Google Scholar]
  94. Touzé T., Blanot D., Mengin-Lecreulx D.. ( 2008a;). Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J Biol Chem283:16573–16583 [CrossRef][PubMed]
    [Google Scholar]
  95. Touzé T., Tran A. X., Hankins J. V., Mengin-Lecreulx D., Trent M. S.. ( 2008b;). Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol67:264–277 [CrossRef][PubMed]
    [Google Scholar]
  96. Tusnády G. E., Simon I.. ( 1998;). Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol283:489–506 [CrossRef][PubMed]
    [Google Scholar]
  97. Valvano M. A.. ( 2008;). Undecaprenyl phosphate recycling comes out of age. Mol Microbiol67:232–235 [CrossRef][PubMed]
    [Google Scholar]
  98. van Berkel M. A., Rieger M., te Heesen S., Ram A. F., van den Ende H., Aebi M., Klis F. M.. ( 1999;). The Saccharomyces cerevisiae CWH8 gene is required for full levels of dolichol-linked oligosaccharides in the endoplasmic reticulum and for efficient N-glycosylation. Glycobiology9:243–253 [CrossRef][PubMed]
    [Google Scholar]
  99. Van Horn W. D., Sanders C. R.. ( 2012;). Prokaryotic diacylglycerol kinase and undecaprenol kinase. Annu Rev Biophys41:81–101 [CrossRef][PubMed]
    [Google Scholar]
  100. Viklund H., Elofsson A.. ( 2008;). octopus: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics24:1662–1668 [CrossRef][PubMed]
    [Google Scholar]
  101. Volpe J. J., Sakakihara Y., Rust R. S.. ( 1987;). Dolichol kinase and the regulation of dolichyl phosphate levels in developing brain. Brain Res428:193–200[PubMed][CrossRef]
    [Google Scholar]
  102. Weerapana E., Imperiali B.. ( 2006;). Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology16:91R–101R [CrossRef][PubMed]
    [Google Scholar]
  103. Welti M.. ( 2013;). Regulation of dolichol-linked glycosylation. Glycoconj J30:51–56 [CrossRef][PubMed]
    [Google Scholar]
  104. Xiao J., Engel J. L., Zhang J., Chen M. J., Manning G., Dixon J. E.. ( 2011;). Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci U S A108:11860–11865 [CrossRef][PubMed]
    [Google Scholar]
  105. Zelinger L., Banin E., Obolensky A., Mizrahi-Meissonnier L., Beryozkin A., Bandah-Rozenfeld D., Frenkel S., Ben-Yosef T., Merin S.. & other authors ( 2011;). A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet88:207–215 [CrossRef][PubMed]
    [Google Scholar]
  106. Zhang X. Y., Bishop A. C.. ( 2008;). Engineered inhibitor sensitivity in the WPD loop of a protein tyrosine phosphatase. Biochemistry47:4491–4500 [CrossRef][PubMed]
    [Google Scholar]
  107. Zhang S., Yu D.. ( 2010;). PI(3)king apart PTEN’s role in cancer. Clin Cancer Res16:4325–4330 [CrossRef][PubMed]
    [Google Scholar]
  108. Zhang J., Guan Z., Murphy A. N., Wiley S. E., Perkins G. A., Worby C. A., Engel J. L., Heacock P., Nguyen O. K.. & other authors ( 2011;). Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab13:690–700 [CrossRef][PubMed]
    [Google Scholar]
  109. Zhu W., Zhang Y., Sinko W., Hensler M. E., Olson J., Molohon K. J., Lindert S., Cao R., Li K.. & other authors ( 2013;). Antibacterial drug leads targeting isoprenoid biosynthesis. Proc Natl Acad Sci U S A110:123–128 [CrossRef][PubMed]
    [Google Scholar]
  110. Züchner S., Dallman J., Wen R., Beecham G., Naj A., Farooq A., Kohli M. A., Whitehead P. L., Hulme W.. & other authors ( 2011;). Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet88:201–206 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070474-0
Loading
/content/journal/micro/10.1099/mic.0.070474-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error