1887

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPRs) are major barriers to recombination through recognition of invading nucleic acids, such as phage and plasmids, and promoting their degredation through the action of CRISPR associated (Cas) proteins. The genomic comparison of 17 strains led to the identification of three novel CRISPR–Cas system variants, based on the Type II (Type II-C) or type I-E systems. The type II-C system was the most common (11/17 isolates) but it lacked the and genes that are involved in spacer acquisition. We also identified that this variant type II-C CRISPR–Cas system is present in other bacteria, and the first system was recently characterized in . In the remaining isolates, the type II-C system was replaced by a variant of type I-E (I-E-a), where the repeat arrays are inserted between the and genes. Three isolates with the type II-C system also possess an additional variant of type I-E (I-E-b), elsewhere in the genome, that exhibits a novel divergent gene organization within the operon. The nucleotide sequences of the palindromic repeats and the gene were phylogenetically incongruent to the core genome. The G+C content of the systems is lower (46.0–49.5 mol%) than the overall DNA G+C content (53 mol%), and they are flanked by mobile genetic elements, providing evidence that they were acquired in three independent horizontal gene transfer events. The majority of spacers lack identity with known phage or plasmid sequences, indicating that there is an unexplored reservoir of corynebacteriophages and plasmids. These novel CRISPR–Cas systems may represent a unique mechanism for spacer acquisitions and defence against invading DNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070235-0
2013-10-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2118.html?itemId=/content/journal/micro/10.1099/mic.0.070235-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Bardsdale W. L., Pappenheimer A. M. Jr.( 1954;). Phage–host relationships in nontoxigenic and toxigenic diphtheria bacilli. J Bacteriol67:220–232[PubMed]
    [Google Scholar]
  3. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P..( 2007;). CRISPR provides acquired resistance against viruses in prokaryotes. Science315:1709–1712 [CrossRef][PubMed]
    [Google Scholar]
  4. Bhaya D., Davison M., Barrangou R..( 2011;). CRISPR–Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet45:273–297 [CrossRef][PubMed]
    [Google Scholar]
  5. Biswas A., Gagnon J. N., Brouns S. J., Fineran P. C., Brown C. M..( 2013;). CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets. RNA Biol10:817–827 [CrossRef][PubMed]
    [Google Scholar]
  6. Blom J., Albaum S. P., Doppmeier D., Pühler A., Vorhölter F. J., Zakrzewski M., Goesmann A..( 2009;). edgar: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics10:154 [CrossRef][PubMed]
    [Google Scholar]
  7. Bolt F., Cassiday P., Tondella M. L., Dezoysa A., Efstratiou A., Sing A., Zasada A., Bernard K., Guiso N..& other authors ( 2010;). Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. J Clin Microbiol48:4177–4185 [CrossRef][PubMed]
    [Google Scholar]
  8. Brouns S. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J., Snijders A. P., Dickman M. J., Makarova K. S., Koonin E. V., van der Oost J..( 2008;). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science321:960–964 [CrossRef][PubMed]
    [Google Scholar]
  9. Chylinski K., Le Rhun A., Charpentier E..( 2013;). The tracrRNA and Cas9 families of type II CRISPR–Cas immunity systems. RNA Biol10:726–737 [CrossRef][PubMed]
    [Google Scholar]
  10. Deng W., Nickle D. C., Learn G. H., Maust B., Mullins J. I..( 2007;). ViroBLAST: a stand-alone blast web server for flexible queries of multiple databases and user’s datasets. Bioinformatics23:2334–2336 [CrossRef][PubMed]
    [Google Scholar]
  11. Dittmann S., Wharton M., Vitek C., Ciotti M., Galazka A., Guichard S., Hardy I., Kartoglu U., Koyama S..& other authors ( 2000;). Successful control of epidemic diphtheria in the states of the former Union of Soviet Socialist Republics: lessons learned. J Infect Dis181:Suppl. 1S10–S22 [CrossRef][PubMed]
    [Google Scholar]
  12. Edwards B., Hunt A. C., Hoskisson P. A..( 2011;). Recent cases of non-toxigenic Corynebacterium diphtheriae in Scotland: justification for continued surveillance. J Med Microbiol60:561–562 [CrossRef][PubMed]
    [Google Scholar]
  13. Farfour E., Badell E., Zasada A., Hotzel H., Tomaso H., Guillot S., Guiso N..( 2012;). Characterization and comparison of invasive Corynebacterium diphtheriae isolates from France and Poland. J Clin Microbiol50:173–175 [CrossRef][PubMed]
    [Google Scholar]
  14. Feil E. J., Li B. C., Aanensen D. M., Hanage W. P., Spratt B. G..( 2004;). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol186:1518–1530 [CrossRef][PubMed]
    [Google Scholar]
  15. Fineran P. C., Charpentier E..( 2012;). Memory of viral infections by CRISPR–Cas adaptive immune systems: acquisition of new information. Virology434:202–209 [CrossRef][PubMed]
    [Google Scholar]
  16. Garneau J. E., Dupuis M. E., Villion M., Romero D. A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A. H., Moineau S..( 2010;). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature468:67–71 [CrossRef][PubMed]
    [Google Scholar]
  17. Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B..(editors) ( 2012;). Bergey’s Manual of Systematic Bacteriology, the Actinobacteria, Part A, 2nd edn.vol. 5 London: Springer; [CrossRef]
    [Google Scholar]
  18. Grissa I., Vergnaud G., Pourcel C..( 2007;). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res35:Web Server issueW52-W57 [CrossRef][PubMed]
    [Google Scholar]
  19. Held N. L., Whitaker R. J..( 2009;). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol11:457–466 [CrossRef][PubMed]
    [Google Scholar]
  20. Hsiao W., Wan I., Jones S. J., Brinkman F. S..( 2003;). IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics19:418–420 [CrossRef][PubMed]
    [Google Scholar]
  21. Joseph B., Schwarz R. F., Linke B., Blom J., Becker A., Claus H., Goesmann A., Frosch M., Müller T..& other authors ( 2011;). Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLoS ONE6:e18441 [CrossRef][PubMed]
    [Google Scholar]
  22. Koonin E. V., Makarova K. S..( 2013;). CRISPR–Cas: Evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol10:679–686 [CrossRef][PubMed]
    [Google Scholar]
  23. Langille M. G., Brinkman F. S..( 2009;). IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics25:664–665 [CrossRef][PubMed]
    [Google Scholar]
  24. Langille M. G., Hsiao W. W., Brinkman F. S..( 2008;). Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics9:329 [CrossRef][PubMed]
    [Google Scholar]
  25. Larsen M. V., Cosentino S., Rasmussen S., Friis C., Hasman H., Marvig R. L., Jelsbak L., Sicheritz-Pontén T., Ussery D. W..& other authors ( 2012;). Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol50:1355–1361 [CrossRef][PubMed]
    [Google Scholar]
  26. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J., Charpentier E., Horvath P., Moineau S., Mojica F. J., Wolf Y. I..& other authors ( 2011;). Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol9:467–477 [CrossRef][PubMed]
    [Google Scholar]
  27. Marks L. R., Reddinger R. M., Hakansson A. P..( 2012;). High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. MBio3:e00200–e00212 [CrossRef][PubMed]
    [Google Scholar]
  28. Marraffini L. A., Sontheimer E. J..( 2010;). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet11:181–190 [CrossRef][PubMed]
    [Google Scholar]
  29. Mokrousov I..( 2009;). Corynebacterium diphtheriae: genome diversity, population structure and genotyping perspectives. Infect Genet Evol9:1–15 [CrossRef][PubMed]
    [Google Scholar]
  30. Mokrousov I..( 2013;). Corynebacterium diphtheriae. Molecular Typing in Bacterial Infections283–300 de Filippis I., McKee M. L.. New York: Humana Press; [CrossRef]
    [Google Scholar]
  31. Mokrousov I., Limeschenko E., Vyazovaya A., Narvskaya O..( 2007;). Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol J2:901–906 [CrossRef][PubMed]
    [Google Scholar]
  32. Ott L., Höller M., Rheinlaender J., Schäffer T. E., Hensel M., Burkovski A..( 2010;). Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol10:257 [CrossRef][PubMed]
    [Google Scholar]
  33. Plagens A., Tjaden B., Hagemann A., Randau L., Hensel R..( 2012;). Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol194:2491–2500 [CrossRef][PubMed]
    [Google Scholar]
  34. Pourcel C., Salvignol G., Vergnaud G..( 2005;). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology151:653–663 [CrossRef][PubMed]
    [Google Scholar]
  35. Richter C., Chang J. T., Fineran P. C..( 2012;). Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR associated (Cas) systems. Viruses4:2291–2311 [CrossRef][PubMed]
    [Google Scholar]
  36. Romney M. G., Roscoe D. L., Bernard K., Lai S., Efstratiou A., Clarke A. M..( 2006;). Emergence of an invasive clone of nontoxigenic Corynebacterium diphtheriae in the urban poor population of Vancouver, Canada. J Clin Microbiol44:1625–1629 [CrossRef][PubMed]
    [Google Scholar]
  37. Sampson T. R., Saroj S. D., Llewellyn A. C., Tzeng Y. L., Weiss D. S..( 2013;). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature497:254–257 [CrossRef][PubMed]
    [Google Scholar]
  38. Sangal V., Hoskisson P. A..( 2013;). Corynephages: infections of the infectors. Corynebacterium diphtheriae and Related Toxigenic Corynebacteria Burkovski A.. Berlin: Springer. (In press.);
    [Google Scholar]
  39. Sangal V., Harbottle H., Mazzoni C. J., Helmuth R., Guerra B., Didelot X., Paglietti B., Rabsch W., Brisse S..& other authors ( 2010;). Evolution and population structure of Salmonella enterica serovar Newport. J Bacteriol192:6465–6476 [CrossRef][PubMed]
    [Google Scholar]
  40. Sangal V., Tucker N. P., Burkovski A., Hoskisson P. A..( 2012a;). Draft genome sequence of Corynebacterium diphtheriae biovar intermedius NCTC 5011. J Bacteriol194:4738 [CrossRef][PubMed]
    [Google Scholar]
  41. Sangal V., Tucker N. P., Burkovski A., Hoskisson P. A..( 2012b;). The draft genome sequence of Corynebacterium diphtheriae bv. mitis NCTC 3529 reveals significant diversity between the primary disease-causing biovars. J Bacteriol194:3269 [CrossRef][PubMed]
    [Google Scholar]
  42. Suarez D. L., Senne D. A., Banks J., Brown I. H., Essen S. C., Lee C. W., Manvell R. J., Mathieu-Benson C., Moreno V..& other authors ( 2004;). Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis10:693–699 [CrossRef][PubMed]
    [Google Scholar]
  43. Swarts D. C., Mosterd C., van Passel M. W., Brouns S. J..( 2012;). CRISPR interference directs strand specific spacer acquisition. PLoS ONE7:e35888 [CrossRef][PubMed]
    [Google Scholar]
  44. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  45. Trost E., Blom J., Soares S. C., Huang I. H., Al-Dilaimi A., Schröder J., Jaenicke S., Dorella F. A., Rocha F. S..& other authors ( 2012;). Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol194:3199–3215 [CrossRef][PubMed]
    [Google Scholar]
  46. Vercoe R. B., Chang J. T., Dy R. L., Taylor C., Gristwood T., Clulow J. S., Richter C., Przybilski R., Pitman A. R., Fineran P. C..( 2013;). Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet9:e1003454 [CrossRef][PubMed]
    [Google Scholar]
  47. Waack S., Keller O., Asper R., Brodag T., Damm C., Fricke W. F., Surovcik K., Meinicke P., Merkl R..( 2006;). Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics7:142 [CrossRef][PubMed]
    [Google Scholar]
  48. Westra E. R., Pul U., Heidrich N., Jore M. M., Lundgren M., Stratmann T., Wurm R., Raine A., Mescher M..& other authors ( 2010;). H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol77:1380–1393 [CrossRef][PubMed]
    [Google Scholar]
  49. Wirth T., Falush D., Lan R., Colles F., Mensa P., Wieler L. H., Karch H., Reeves P. R., Maiden M. C..& other authors ( 2006;). Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol60:1136–1151 [CrossRef][PubMed]
    [Google Scholar]
  50. Yosef I., Goren M. G., Qimron U..( 2012;). Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res40:5569–5576 [CrossRef][PubMed]
    [Google Scholar]
  51. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J..& other authors ( 2007;). Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhang J., Kasciukovic T., White M. F..( 2012;). The CRISPR associated protein Cas4 is a 5′ to 3′ DNA exonuclease with an iron–sulfur cluster. PLoS ONE7:e47232 [CrossRef][PubMed]
    [Google Scholar]
  53. Zhang Y., Heidrich N., Ampattu B. J., Gunderson C. W., Seifert H. S., Schoen C., Vogel J., Sontheimer E. J..( 2013;). Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell50:488–503 [CrossRef][PubMed]
    [Google Scholar]
  54. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S..( 2011;). phast: a fast phage search tool. Nucleic Acids Res39:Web Server issueW347--W352 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070235-0
Loading
/content/journal/micro/10.1099/mic.0.070235-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error