1887

Abstract

Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, and type II diabetes – all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides – all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069575-0
2013-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1795.html?itemId=/content/journal/micro/10.1099/mic.0.069575-0&mimeType=html&fmt=ahah

References

  1. Ami D., Natalello A., Schultz T., Gatti-Lafranconi P., Lotti M., Doglia S. M., de Marco A.. ( 2009;). Effects of recombinant protein misfolding and aggregation on bacterial membranes. . Biochim Biophys Acta 1794:, 263–269. [CrossRef][PubMed]
    [Google Scholar]
  2. Amijee H., Madine J., Middleton D. A., Doig A. J.. ( 2009;). Inhibitors of protein aggregation and toxicity. . Biochem Soc Trans 37:, 692–696. [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Morimoto R. I., Dillin A., Kelly J. W.. ( 2008;). Adapting proteostasis for disease intervention. . Science 319:, 916–919. [CrossRef][PubMed]
    [Google Scholar]
  4. Balguerie A., Dos Reis S., Ritter C., Chaignepain S., Coulary-Salin B., Forge V., Bathany K., Lascu I., Schmitter J. M.. & other authors ( 2003;). Domain organization and structure–function relationship of the HET-s prion protein of Podospora anserina. . EMBO J 22:, 2071–2081. [CrossRef][PubMed]
    [Google Scholar]
  5. Beerten J., Schymkowitz J., Rousseau F.. ( 2012;). Aggregation prone regions and gatekeeping residues in protein sequences. . Curr Top Med Chem 12:, 2470–2478. [CrossRef][PubMed]
    [Google Scholar]
  6. Bence N. F., Sampat R. M., Kopito R. R.. ( 2001;). Impairment of the ubiquitin-proteasome system by protein aggregation. . Science 292:, 1552–1555. [CrossRef][PubMed]
    [Google Scholar]
  7. Benilova I., Karran E., De Strooper B.. ( 2012;). The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. . Nat Neurosci 15:, 349–357. [CrossRef][PubMed]
    [Google Scholar]
  8. Berge A., Kihlberg B.-M., Sjöholm A. G., Björck L.. ( 1997;). Streptococcal protein H forms soluble complement-activating complexes with IgG, but inhibits complement activation by IgG-coated targets. . J Biol Chem 272:, 20774–20781. [CrossRef][PubMed]
    [Google Scholar]
  9. Bieler S., Estrada L., Lagos R., Baeza M., Castilla J., Soto C.. ( 2005;). Amyloid formation modulates the biological activity of a bacterial protein. . J Biol Chem 280:, 26880–26885. [CrossRef][PubMed]
    [Google Scholar]
  10. Brötz-Oesterhelt H., Beyer D., Kroll H.-P., Endermann R., Ladel C., Schroeder W., Hinzen B., Raddatz S., Paulsen H.. & other authors ( 2005;). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. . Nat Med 11:, 1082–1087. [CrossRef][PubMed]
    [Google Scholar]
  11. Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C. M., Stefani M.. ( 2002;). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. . Nature 416:, 507–511. [CrossRef][PubMed]
    [Google Scholar]
  12. Capstick D. S., Jomaa A., Hanke C., Ortega J., Elliot M. A.. ( 2011;). Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis. . Proc Natl Acad Sci U S A 108:, 9821–9826. [CrossRef][PubMed]
    [Google Scholar]
  13. Carrió M. M., Villaverde A.. ( 2003;). Role of molecular chaperones in inclusion body formation. . FEBS Lett 537:, 215–221. [CrossRef][PubMed]
    [Google Scholar]
  14. Carrió M. M., Cubarsi R., Villaverde A.. ( 2000;). Fine architecture of bacterial inclusion bodies. . FEBS Lett 471:, 7–11. [CrossRef][PubMed]
    [Google Scholar]
  15. Carrió M., González-Montalbán N., Vera A., Villaverde A., Ventura S.. ( 2005;). Amyloid-like properties of bacterial inclusion bodies. . J Mol Biol 347:, 1025–1037. [CrossRef][PubMed]
    [Google Scholar]
  16. Castillo V., Graña-Montes R., Ventura S.. ( 2011;). The aggregation properties of Escherichia coli proteins associated with their cellular abundance. . Biotechnol J 6:, 752–760. [CrossRef][PubMed]
    [Google Scholar]
  17. Chaussee M. S., Phillips E. R., Ferretti J. J.. ( 1997;). Temporal production of streptococcal erythrogenic toxin B (streptococcal cysteine proteinase) in response to nutrient depletion. . Infect Immun 65:, 1956–1959.[PubMed]
    [Google Scholar]
  18. Cheng L., Naumann T. A., Horswill A. R., Hong S.-J., Venters B. J., Tomsho J. W., Benkovic S. J., Keiler K. C.. ( 2007;). Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. . Protein Sci 16:, 1535–1542. [CrossRef][PubMed]
    [Google Scholar]
  19. Chiti F., Dobson C. M.. ( 2009;). Amyloid formation by globular proteins under native conditions. . Nat Chem Biol 5:, 15–22. [CrossRef][PubMed]
    [Google Scholar]
  20. Choi Y.-G., Kim J.-I., Lee H.-P., Jin J.-K., Choi E.-K., Carp R. I., Kim Y.-S.. ( 2000;). Induction of heme oxygenase-1 in the brains of scrapie-infected mice. . Neurosci Lett 289:, 173–176. [CrossRef][PubMed]
    [Google Scholar]
  21. de Groot N. S., Ventura S.. ( 2010;). Protein aggregation profile of the bacterial cytosol. . PLoS ONE 5:, e9383. [CrossRef][PubMed]
    [Google Scholar]
  22. de Groot N. S., Sabate R., Ventura S.. ( 2009;). Amyloids in bacterial inclusion bodies. . Trends Biochem Sci 34:, 408–416. [CrossRef][PubMed]
    [Google Scholar]
  23. Demuro A., Mina E., Kayed R., Milton S. C., Parker I., Glabe C. G.. ( 2005;). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. . J Biol Chem 280:, 17294–17300. [CrossRef][PubMed]
    [Google Scholar]
  24. Dominguez D. C.. ( 2004;). Calcium signalling in bacteria. . Mol Microbiol 54:, 291–297. [CrossRef][PubMed]
    [Google Scholar]
  25. Dougan D. A., Mogk A., Bukau B.. ( 2002;). Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. . Cell Mol Life Sci 59:, 1607–1616. [CrossRef][PubMed]
    [Google Scholar]
  26. DuBay K. F., Pawar A. P., Chiti F., Zurdo J., Dobson C. M., Vendruscolo M.. ( 2004;). Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. . J Mol Biol 341:, 1317–1326. [CrossRef][PubMed]
    [Google Scholar]
  27. Dukan S., Nyström T.. ( 1998;). Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. . Genes Dev 12:, 3431–3441. [CrossRef][PubMed]
    [Google Scholar]
  28. Fink A. L.. ( 1998;). Protein aggregation: folding aggregates, inclusion bodies and amyloid. . Folding Des 3:, R9–R23. [CrossRef][PubMed]
    [Google Scholar]
  29. Fowler D. M., Koulov A. V., Balch W. E., Kelly J. W.. ( 2007;). Functional amyloid – from bacteria to humans. . Trends Biochem Sci 32:, 217–224. [CrossRef][PubMed]
    [Google Scholar]
  30. Frees D., Qazi S. N. A., Hill P. J., Ingmer H.. ( 2003;). Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. . Mol Microbiol 48:, 1565–1578. [CrossRef][PubMed]
    [Google Scholar]
  31. Frick I. M., Mörgelin M., Björck L.. ( 2000;). Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein–protein interactions. . Mol Microbiol 37:, 1232–1247. [CrossRef][PubMed]
    [Google Scholar]
  32. García-Fruitós E., González-Montalbán N., Morell M., Vera A., Ferraz R. M., Arís A., Ventura S., Villaverde A.. ( 2005;). Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. . Microb Cell Fact 4:, 27. [CrossRef][PubMed]
    [Google Scholar]
  33. Garland W. J., Buckley J. T.. ( 1988;). The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin. . Infect Immun 56:, 1249–1253.[PubMed]
    [Google Scholar]
  34. Garrity S. J., Sivanathan V., Dong J., Lindquist S., Hochschild A.. ( 2010;). Conversion of a yeast prion protein to an infectious form in bacteria. . Proc Natl Acad Sci U S A 107:, 10596–10601. [CrossRef][PubMed]
    [Google Scholar]
  35. Glabe C. G.. ( 2006;). Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. . Neurobiol Aging 27:, 570–575. [CrossRef][PubMed]
    [Google Scholar]
  36. Green J. D., Kreplak L., Goldsbury C., Li Blatter X., Stolz M., Cooper G. S., Seelig A., Kistler J., Aebi U.. ( 2004;). Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. . J Mol Biol 342:, 877–887. [CrossRef][PubMed]
    [Google Scholar]
  37. Gsponer J., Babu M. M.. ( 2012;). Cellular strategies for regulating functional and nonfunctional protein aggregation. . Cell Rep 2:, 1425–1437. [CrossRef][PubMed]
    [Google Scholar]
  38. Guentchev M., Voigtländer T., Haberler C., Groschup M. H., Budka H.. ( 2000;). Evidence for oxidative stress in experimental prion disease. . Neurobiol Dis 7:, 270–273. [CrossRef][PubMed]
    [Google Scholar]
  39. Guisbert E., Herman C., Lu C. Z., Gross C. A.. ( 2004;). A chaperone network controls the heat shock response in E. coli. . Genes Dev 18:, 2812–2821. [CrossRef][PubMed]
    [Google Scholar]
  40. Hartl F. U., Bracher A., Hayer-Hartl M.. ( 2011;). Molecular chaperones in protein folding and proteostasis. . Nature 475:, 324–332. [CrossRef][PubMed]
    [Google Scholar]
  41. Herbaud M.-L., Guiseppi A., Denizot F., Haiech J., Kilhoffer M.-C.. ( 1998;). Calcium signalling in Bacillus subtilis.. Biochim Biophys Acta 1448:, 212–226. [CrossRef][PubMed]
    [Google Scholar]
  42. Hirakura Y., Azimov R., Azimova R., Kagan B. L.. ( 2000;). Polyglutamine-induced ion channels: a possible mechanism for the neurotoxicity of Huntington and other CAG repeat diseases. . J Neurosci Res 60:, 490–494. [CrossRef][PubMed]
    [Google Scholar]
  43. Hotze E. M., Heuck A. P., Czajkowsky D. M., Shao Z., Johnson A. E., Tweten R. K.. ( 2002;). Monomer–monomer interactions drive the prepore to pore conversion of a β-barrel-forming cholesterol-dependent cytolysin. . J Biol Chem 277:, 11597–11605. [CrossRef][PubMed]
    [Google Scholar]
  44. Hyun D.-H., Lee M., Hattori N., Kubo S.-I., Mizuno Y., Halliwell B., Jenner P.. ( 2002;). Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. . J Biol Chem 277:, 28572–28577. [CrossRef][PubMed]
    [Google Scholar]
  45. Jahn T. R., Radford S. E.. ( 2005;). The Yin and Yang of protein folding. . FEBS J 272:, 5962–5970. [CrossRef][PubMed]
    [Google Scholar]
  46. Kagan B. L., Hirakura Y., Azimov R., Azimova R.. ( 2001;). The channel hypothesis of Huntington’s disease. . Brain Res Bull 56:, 281–284. [CrossRef][PubMed]
    [Google Scholar]
  47. Kayed R., Head E., Thompson J. L., McIntire T. M., Milton S. C., Cotman C. W., Glabe C. G.. ( 2003;). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. . Science 300:, 486–489. [CrossRef][PubMed]
    [Google Scholar]
  48. Kragol G., Lovas S., Varadi G., Condie B. A., Hoffmann R., Otvos L. Jr. ( 2001;). The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. . Biochemistry 40:, 3016–3026. [CrossRef][PubMed]
    [Google Scholar]
  49. Kress W., Maglica Ž., Weber-Ban E.. ( 2009;). Clp chaperone-proteases: structure and function. . Res Microbiol 160:, 618–628. [CrossRef][PubMed]
    [Google Scholar]
  50. Krüger E., Witt E., Ohlmeier S., Hanschke R., Hecker M.. ( 2000;). The Clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. . J Bacteriol 182:, 3259–3265. [CrossRef][PubMed]
    [Google Scholar]
  51. Lashuel H. A., Lansbury P. T. Jr. ( 2006;). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?. Q Rev Biophys 39:, 167–201. [CrossRef][PubMed]
    [Google Scholar]
  52. Liberek K., Lewandowska A., Zietkiewicz S.. ( 2008;). Chaperones in control of protein disaggregation. . EMBO J 27:, 328–335. [CrossRef][PubMed]
    [Google Scholar]
  53. Lin G., Li D., de Carvalho L. P. S., Deng H., Tao H., Vogt G., Wu K., Schneider J., Chidawanyika T.. & other authors ( 2009;). Inhibitors selective for mycobacterial versus human proteasomes. . Nature 461:, 621–626. [CrossRef][PubMed]
    [Google Scholar]
  54. Lindner A. B., Madden R., Demarez A., Stewart E. J., Taddei F.. ( 2008;). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. . Proc Natl Acad Sci U S A 105:, 3076–3081. [CrossRef][PubMed]
    [Google Scholar]
  55. Ling J., Cho C., Guo L. T., Aerni H. R., Rinehart J., Söll D.. ( 2012;). Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. . Mol Cell 48:, 713–722. [CrossRef][PubMed]
    [Google Scholar]
  56. Maisonneuve E., Fraysse L., Moinier D., Dukan S.. ( 2008a;). Existence of abnormal protein aggregates in healthy Escherichia coli cells. . J Bacteriol 190:, 887–893. [CrossRef][PubMed]
    [Google Scholar]
  57. Maisonneuve E., Fraysse L., Lignon S., Capron L., Dukan S.. ( 2008b;). Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli. . J Bacteriol 190:, 6609–6614. [CrossRef][PubMed]
    [Google Scholar]
  58. Makin O. S., Atkins E., Sikorski P., Johansson J., Serpell L. C.. ( 2005;). Molecular basis for amyloid fibril formation and stability. . Proc Natl Acad Sci U S A 102:, 315–320. [CrossRef][PubMed]
    [Google Scholar]
  59. Markossian K. A., Kurganov B. I.. ( 2004;). Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. . Biochemistry (Moscow) 69:, 971–984. [CrossRef][PubMed]
    [Google Scholar]
  60. Martínez-Alonso M., González-Montalbán N., García-Fruitós E., Villaverde A.. ( 2009;). Learning about protein solubility from bacterial inclusion bodies. . Microb Cell Fact 8:, 4. [CrossRef][PubMed]
    [Google Scholar]
  61. Maurer-Stroh S., Debulpaep M., Kuemmerer N., Lopez de la Paz M., Martins I. C., Reumers J., Morris K. L., Copland A., Serpell L.. & other authors ( 2010;). Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. . Nat Methods 7:, 237–242. [CrossRef][PubMed]
    [Google Scholar]
  62. Menozzi F. D., Boucher P. E., Riveau G., Gantiez C., Locht C.. ( 1994;). Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis. . Infect Immun 62:, 4261–4269.[PubMed]
    [Google Scholar]
  63. Menozzi F. D., Rouse J. H., Alavi M., Laude-Sharp M., Muller J., Bischoff R., Brennan M. J., Locht C.. ( 1996;). Identification of a heparin-binding hemagglutinin present in mycobacteria. . J Exp Med 184:, 993–1001. [CrossRef][PubMed]
    [Google Scholar]
  64. Merino N., Toledo-Arana A., Vergara-Irigaray M., Valle J., Solano C., Calvo E., Lopez J. A., Foster T. J., Penadés J. R., Lasa I.. ( 2009;). Protein A-mediated multicellular behavior in Staphylococcus aureus. . J Bacteriol 191:, 832–843. [CrossRef][PubMed]
    [Google Scholar]
  65. Milhavet O., Lehmann S.. ( 2002;). Oxidative stress and the prion protein in transmissible spongiform encephalopathies. . Brain Res Brain Res Rev 38:, 328–339. [CrossRef][PubMed]
    [Google Scholar]
  66. Mogk A., Mayer M. P., Deuerling E.. ( 2002;). Mechanisms of protein folding: molecular chaperones and their application in biotechnology. . ChemBioChem 3:, 807–814. [CrossRef][PubMed]
    [Google Scholar]
  67. Monoi H.. ( 1995;). New tubular single-stranded helix of poly-l-amino acids suggested by molecular mechanics calculations: I. Homopolypeptides in isolated environments. . Biophys J 69:, 1130–1141. [CrossRef][PubMed]
    [Google Scholar]
  68. Morgan G. J., Giannini S., Hounslow A. M., Craven C. J., Zerovnik E., Turk V., Waltho J. P., Staniforth R. A.. ( 2008;). Exclusion of the native α-helix from the amyloid fibrils of a mixed α/β protein. . J Mol Biol 375:, 487–498. [CrossRef][PubMed]
    [Google Scholar]
  69. Muchowski P. J., Wacker J. L.. ( 2005;). Modulation of neurodegeneration by molecular chaperones. . Nat Rev Neurosci 6:, 11–22. [CrossRef][PubMed]
    [Google Scholar]
  70. Nelson R., Sawaya M. R., Balbirnie M., Madsen A. O., Riekel C., Grothe R., Eisenberg D.. ( 2005;). Structure of the cross-β spine of amyloid-like fibrils. . Nature 435:, 773–778. [CrossRef][PubMed]
    [Google Scholar]
  71. Okumura S., Saitoh H., Ishikawa T., Inouye K., Mizuki E.. ( 2011;). Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. . Biochim Biophys Acta 1808:, 1476–1482. [CrossRef][PubMed]
    [Google Scholar]
  72. Olzscha H., Schermann S. M., Woerner A. C., Pinkert S., Hecht M. H., Tartaglia G. G., Vendruscolo M., Hayer-Hartl M., Hartl F. U., Vabulas R. M.. ( 2011;). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. . Cell 144:, 67–78. [CrossRef][PubMed]
    [Google Scholar]
  73. Ono K., Takahashi R., Ikeda T., Yamada M.. ( 2012;). Cross-seeding effects of amyloid β-protein and α-synuclein. . J Neurochem 122:, 883–890. [CrossRef][PubMed]
    [Google Scholar]
  74. Otzen D., Nielsen P. H.. ( 2008;). We find them here, we find them there: functional bacterial amyloid. . Cell Mol Life Sci 65:, 910–927. [CrossRef][PubMed]
    [Google Scholar]
  75. Quist A., Doudevski I., Lin H., Azimova R., Ng D., Frangione B., Kagan B., Ghiso J., Lal R.. ( 2005;). Amyloid ion channels: a common structural link for protein-misfolding disease. . Proc Natl Acad Sci U S A 102:, 10427–10432. [CrossRef][PubMed]
    [Google Scholar]
  76. Reumers J., Maurer-Stroh S., Schymkowitz J., Rousseau F.. ( 2009;). Protein sequences encode safeguards against aggregation. . Hum Mutat 30:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  77. Robertson G. T., Ng W.-L., Gilmour R., Winkler M. E.. ( 2003;). Essentiality of clpX, but not clpP, clpL, clpC, or clpE, in Streptococcus pneumoniae R6. . J Bacteriol 185:, 2961–2966. [CrossRef][PubMed]
    [Google Scholar]
  78. Romero D., Aguilar C., Losick R., Kolter R.. ( 2010;). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. . Proc Natl Acad Sci U S A 107:, 2230–2234. [CrossRef][PubMed]
    [Google Scholar]
  79. Rousseau F., Schymkowitz J., Serrano L.. ( 2006a;). Protein aggregation and amyloidosis: confusion of the kinds?. Curr Opin Struct Biol 16:, 118–126. [CrossRef][PubMed]
    [Google Scholar]
  80. Rousseau F., Serrano L., Schymkowitz J. W.. ( 2006b;). How evolutionary pressure against protein aggregation shaped chaperone specificity. . J Mol Biol 355:, 1037–1047. [CrossRef][PubMed]
    [Google Scholar]
  81. Sarell C. J., Woods L. A., Su Y., Debelouchina G. T., Ashcroft A. E., Griffin R. G., Stockley P. G., Radford S. E.. ( 2013;). Expanding the repertoire of amyloid polymorphs by co-polymerization of related protein precursors. . J Biol Chem 288:, 7327–7337. [CrossRef][PubMed]
    [Google Scholar]
  82. Sawyer E. B., Claessen D., Haas M., Hurgobin B., Gras S. L.. ( 2011;). The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. . PLoS ONE 6:, e18839. [CrossRef][PubMed]
    [Google Scholar]
  83. Schlieker C., Bukau B., Mogk A.. ( 2002;). Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. . J Biotechnol 96:, 13–21. [CrossRef][PubMed]
    [Google Scholar]
  84. Steffan J. S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y. Z., Gohler H., Wanker E. E., Bates G. P., Housman D. E., Thompson L. M.. ( 2000;). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. . Proc Natl Acad Sci U S A 97:, 6763–6768. [CrossRef][PubMed]
    [Google Scholar]
  85. Stöver A. G., Driks A.. ( 1999;). Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. . J Bacteriol 181:, 1664–1672.[PubMed]
    [Google Scholar]
  86. Su C.-Y., Chong K.-Y., Edelstein K., Lille S., Khardori R., Lai C.-C.. ( 1999;). Constitutive hsp70 attenuates hydrogen peroxide-induced membrane lipid peroxidation. . Biochem Biophys Res Commun 265:, 279–284. [CrossRef][PubMed]
    [Google Scholar]
  87. Tartaglia G. G., Vendruscolo M.. ( 2009;). Correlation between mRNA expression levels and protein aggregation propensities in subcellular localisations. . Mol Biosyst 5:, 1873–1876. [CrossRef][PubMed]
    [Google Scholar]
  88. Tyedmers J., Mogk A., Bukau B.. ( 2010;). Cellular strategies for controlling protein aggregation. . Nat Rev Mol Cell Biol 11:, 777–788. [CrossRef][PubMed]
    [Google Scholar]
  89. Ventura S., Villaverde A.. ( 2006;). Protein quality in bacterial inclusion bodies. . Trends Biotechnol 24:, 179–185. [CrossRef][PubMed]
    [Google Scholar]
  90. Vera A., Arís A., Carrió M., González-Montalbán N., Villaverde A.. ( 2005;). Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. . J Biotechnol 119:, 163–171. [CrossRef][PubMed]
    [Google Scholar]
  91. Villa R., Lotti M., Gatti-Lafranconi P.. ( 2009;). Components of the E. coli envelope are affected by and can react to protein over-production in the cytoplasm. . Microb Cell Fact 8:, 32. [CrossRef][PubMed]
    [Google Scholar]
  92. Wang X., Smith D. R., Jones J. W., Chapman M. R.. ( 2007;). In vitro polymerization of a functional Escherichia coli amyloid protein. . J Biol Chem 282:, 3713–3719. [CrossRef][PubMed]
    [Google Scholar]
  93. Wang L., Maji S. K., Sawaya M. R., Eisenberg D., Riek R.. ( 2008;). Bacterial inclusion bodies contain amyloid-like structure. . PLoS Biol 6:, e195. [CrossRef][PubMed]
    [Google Scholar]
  94. Wang X., Zhou Y., Ren J. J., Hammer N. D., Chapman M. R.. ( 2010;). Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. . Proc Natl Acad Sci U S A 107:, 163–168. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069575-0
Loading
/content/journal/micro/10.1099/mic.0.069575-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error