1887

Abstract

sp. strain NB4-1Y was isolated from vermicompost using bis-(3-pentafluorophenylpropyl)-sulfide as the sole added sulfur source and was found to have a broad capacity for metabolizing organosulfur compounds. NB4-1Y is closely related to and was found to metabolize 6 : 2 fluorotelomer sulfonate (6 : 2 FTS) to 5 : 3 fluorotelomer acid (5 : 3 acid) via 6 : 2 fluorotelomer acid (6 : 2 FTCA), 6 : 2 unsaturated fluorotelomer acid (6 : 2 FTUCA) and 5 : 3 unsaturated fluorotelomer acid (5 : 3 Uacid). Given that the molecular and biochemical basis for the microbial metabolism of poly- and per-fluorinated compounds has yet to be examined, we undertook to investigate 6 : 2 FTS metabolism in NB4-1Y. To this end, a whole-genome shotgun sequence was prepared and two-dimensional differential in-gel electrophoresis was used to compare proteomes of MgSO- and 6 : 2 FTS-grown cells. Of the three putative alkanesulfonate monooxygenases, four nitrilotriacetate monooxygenases and one taurine dioxygenase located in the draft genome, two nitrilotriacetate monooxygenases were differentially expressed in the presence of 6 : 2 FTS. It is hypothesized that these two enzymes may be responsible for 6 : 2 FTS desulfonation. In addition, a differentially expressed putative double bond reductase may be involved in the reduction of 5 : 3 Uacid to 5 : 3 acid. Other proteins differentially expressed during 6 : 2 FTS metabolism included a sulfate ABC transporter ATP-binding protein and two alkyl hydroperoxide reductases. This work establishes a foundation for future studies on the molecular biology and biochemistry of poly- and per-fluorinated compound metabolism in bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068932-0
2013-08-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1618.html?itemId=/content/journal/micro/10.1099/mic.0.068932-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  2. Arenskötter M., Bröker D., Steinbüchel A.. ( 2004;). Biology of the metabolically diverse genus Gordonia. . Appl Environ Microbiol70:3195–3204 [CrossRef][PubMed]
    [Google Scholar]
  3. Autry A., Fitzgerald J.. ( 1990;). Sulfonate-S – a major form of forest soil organic sulfur. Biol Fertil Soils10:50–56
    [Google Scholar]
  4. Bollinger J. M., Price J. C., Hoffart L. M., Barr E. W., Krebs C.. ( 2005;). Mechanism of taurine: α-ketoglutarate dioxygenase (TauD) from Escherichia coli. . Eur J Inorg Chem2005:4245–4254 [CrossRef]
    [Google Scholar]
  5. Chevreux B., Wetter T., Suhai S.. ( 1999;). Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology: Proceedings of the German Conference of Bioinformatics (GCB)99:45–56
    [Google Scholar]
  6. Clarke B. O., Smith S. R.. ( 2011;). Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int37:226–247 [CrossRef][PubMed]
    [Google Scholar]
  7. Cook A. M., Smits T. H. M., Denger K.. ( 2008;). Sulfonates and Organotrophic Sulfite Metabolism Dahl C., Friedrich C. G.. Berlin: Springer-Verlag Berlin;
    [Google Scholar]
  8. Dinglasan M. J. A., Ye Y., Edwards E. A., Mabury S. A.. ( 2004;). Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol38:2857–2864 [CrossRef][PubMed]
    [Google Scholar]
  9. Drzyzga O.. ( 2012;). The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol38:300–316 [CrossRef][PubMed]
    [Google Scholar]
  10. Eichhorn E., van der Ploeg J. R., Kertesz M. A., Leisinger T.. ( 1997;). Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. . J Biol Chem272:23031–23036 [CrossRef][PubMed]
    [Google Scholar]
  11. Eichhorn E., van der Ploeg J. R., Leisinger T.. ( 1999;). Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. . J Biol Chem274:26639–26646 [CrossRef][PubMed]
    [Google Scholar]
  12. Eichhorn E., Davey C. A., Sargent D. F., Leisinger T., Richmond T. J.. ( 2002;). Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J Mol Biol324:457–468 [CrossRef][PubMed]
    [Google Scholar]
  13. Ellis H. R.. ( 2010;). The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys497:1–12 [CrossRef][PubMed]
    [Google Scholar]
  14. Endoh T., Kasuga K., Horinouchi M., Yoshida T., Habe H., Nojiri H., Omori T.. ( 2003;). Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Appl Microbiol Biotechnol62:83–91 [CrossRef][PubMed]
    [Google Scholar]
  15. Erwin K. N., Nakano S., Zuber P.. ( 2005;). Sulfate-dependent repression of genes that function in organosulfur metabolism in Bacillus subtilis requires Spx. J Bacteriol187:4042–4049 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  17. Froemel T., Knepper T. P.. ( 2010;). Biodegradation of fluorinated alkyl substances. Perfluorinated Alkylated Substances161–177 Whitacre D. M., DeVoogt P.. New York: Springer;
  18. Hemmerich C., Buechlein A., Podicheti R., Revanna K. V., Dong Q.. ( 2010;). An Ergatis-based prokaryotic genome annotation web server. Bioinformatics26:1122–1124 [CrossRef][PubMed]
    [Google Scholar]
  19. Higgins C. P., Field J. A., Criddle C. S., Luthy R. G.. ( 2005;). Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol39:3946–3956 [CrossRef][PubMed]
    [Google Scholar]
  20. Kahnert A., Vermeij P., Wietek C., James P., Leisinger T., Kertesz M. A.. ( 2000;). The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol182:2869–2878 [CrossRef][PubMed]
    [Google Scholar]
  21. Karp P. D., Paley S., Romero P.. ( 2002;). The Pathway Tools software. Bioinformatics18:Suppl 1S225–S232 [CrossRef][PubMed]
    [Google Scholar]
  22. Kertesz M. A.. ( 2000;). Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev24:135–175[PubMed]
    [Google Scholar]
  23. Key B. D., Howell R. D., Criddle C. S.. ( 1998;). Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environ Sci Technol32:2283–2287 [CrossRef]
    [Google Scholar]
  24. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  25. Kim S. B., Brown R., Oldfield C., Gilbert S. C., Goodfellow M.. ( 1999;). Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. Int J Syst Bacteriol49:1845–1851 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim K.-J., Kim S., Lee S., Kang B. S., Lee H.-S., Oh T.-K., Kim M. H.. ( 2006;). Crystallization and initial crystallographic characterization of the Corynebacterium glutamicum nitrilotriacetate monooxygenase component A. Acta Crystallogr Sect F Struct Biol Cryst Commun62:1141–1143 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim M. H., Wang N., McDonald T., Chu K.-H.. ( 2012;). Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains. Biotechnol Bioeng109:3041–3048 [CrossRef][PubMed]
    [Google Scholar]
  28. Koch D. J., Rückert C., Rey D. A., Mix A., Pühler A., Kalinowski J.. ( 2005;). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol71:6104–6114 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu J., Lee L. S., Nies L. F., Nakatsu C. H., Turco R. F.. ( 2007;). Biotransformation of 8:2 fluorotelomer alcohol in soil and by soil bacteria isolates. Environ Sci Technol41:8024–8030 [CrossRef][PubMed]
    [Google Scholar]
  30. Liu J., Wang N., Szostek B., Buck R. C., Panciroli P. K., Folsom P. W., Sulecki L. M., Bellin C. A.. ( 2010;). 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture. Chemosphere78:437–444 [CrossRef][PubMed]
    [Google Scholar]
  31. Loewen M., Wania F., Wang F., Tomy G.. ( 2008;). Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in Western Canada. Environ Sci Technol42:2374–2379 [CrossRef][PubMed]
    [Google Scholar]
  32. Loganathan B. G., Sajwan K. S., Sinclair E., Senthil Kumar K., Kannan K.. ( 2007;). Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Res41:4611–4620 [CrossRef][PubMed]
    [Google Scholar]
  33. Murphy C. D.. ( 2010;). Biodegradation and biotransformation of organofluorine compounds. Biotechnol Lett32:351–359 [CrossRef][PubMed]
    [Google Scholar]
  34. Nabb D. L., Szostek B., Himmelstein M. W., Mawn M. P., Gargas M. L., Sweeney L. M., Stadler J. C., Buck R. C., Fasano W. J.. ( 2007;). In vitro metabolism of 8-2 fluorotelomer alcohol: interspecies comparisons and metabolic pathway refinement. Toxicol Sci100:333–344 [CrossRef][PubMed]
    [Google Scholar]
  35. Newsted J. L., Beach S. A., Gallagher S. P., Giesy J. P.. ( 2008;). Acute and chronic effects of perfluorobutane sulfonate (PFBS) on the mallard and northern bobwhite quail. Arch Environ Contam Toxicol54:535–545 [CrossRef][PubMed]
    [Google Scholar]
  36. Oakes K. D., Benskin J. P., Martin J. W., Ings J. S., Heinrichs J. Y., Dixon D. G., Servos M. R.. ( 2010;). Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam. Aquat Toxicol98:120–129 [CrossRef][PubMed]
    [Google Scholar]
  37. Olsen G. W., Church T. R., Miller J. P., Burris J. M., Hansen K. J., Lundberg J. K., Armitage J. B., Herron R. M., Medhdizadehkashi Z.. & other authors ( 2003;). Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environ Health Perspect111:1892–1901 [CrossRef][PubMed]
    [Google Scholar]
  38. Patrauchan M. A., Florizone C., Dosanjh M., Mohn W. W., Davies J., Eltis L. D.. ( 2005;). Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol187:4050–4063 [CrossRef][PubMed]
    [Google Scholar]
  39. Phillips M. M., Dinglasan-Panlilio M. J. A., Mabury S. A., Solomon K. R., Sibley P. K.. ( 2007;). Fluorotelomer acids are more toxic than perfluorinated acids. Environ Sci Technol41:7159–7163 [CrossRef][PubMed]
    [Google Scholar]
  40. Place B. J., Field J. A.. ( 2012;). Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol46:7120–7127 [CrossRef][PubMed]
    [Google Scholar]
  41. Rhoads K. R., Janssen E. M. L., Luthy R. G., Criddle C. S.. ( 2008;). Aerobic biotransformation and fate of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge. Environ Sci Technol42:2873–2878 [CrossRef][PubMed]
    [Google Scholar]
  42. Robbins J. M., Ellis H. R.. ( 2012;). Identification of critical steps governing the two-component alkanesulfonate monooxygenase catalytic mechanism. Biochemistry51:6378–6387 [CrossRef][PubMed]
    [Google Scholar]
  43. Russell M. H., Berti W. R., Szostek B., Buck R. C.. ( 2008;). Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils. Environ Sci Technol42:800–807 [CrossRef][PubMed]
    [Google Scholar]
  44. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  45. Scherer H. W.. ( 2009;). Sulfur in soils. J Plant Nutr Soil Sci172:326–335 [CrossRef]
    [Google Scholar]
  46. Schröder H. F.. ( 2003;). Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. J Chromatogr A1020:131–151 [CrossRef][PubMed]
    [Google Scholar]
  47. Schultz M. M., Barofsky D. F., Field J. A.. ( 2004;). Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ Sci Technol38:1828–1835 [CrossRef][PubMed]
    [Google Scholar]
  48. Scott B. F., Moody C. A., Spencer C., Small J. M., Muir D. C., Mabury S. A.. ( 2006;). Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC–MS and analysis of PFOA from large-volume samples. Environ Sci Technol40:6405–6410 [CrossRef][PubMed]
    [Google Scholar]
  49. Scott C., Hilton M. E., Coppin C. W., Russell R. J., Oakeshott J. G., Sutherland T. D.. ( 2007;). A global response to sulfur starvation in Pseudomonas putida and its relationship to the expression of low-sulfur-content proteins. FEMS Microbiol Lett267:184–193 [CrossRef][PubMed]
    [Google Scholar]
  50. Shoeib M., Harner T., Lee S. C., Lane D., Zhu J.. ( 2008;). Sorbent-impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals. Anal Chem80:675–682 [CrossRef][PubMed]
    [Google Scholar]
  51. Sinclair E., Kannan K.. ( 2006;). Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ Sci Technol40:1408–1414 [CrossRef][PubMed]
    [Google Scholar]
  52. Suja F., Pramanik B. K., Zain S. M.. ( 2009;). Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Sci Technol60:1533–1544 [CrossRef][PubMed]
    [Google Scholar]
  53. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  54. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  55. van Berkel W. J. H., Kamerbeek N. M., Fraaije M. W.. ( 2006;). Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol124:670–689 [CrossRef][PubMed]
    [Google Scholar]
  56. van der Ploeg J. R., Cummings N. J., Leisinger T., Connerton I. F.. ( 1998;). Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology144:2555–2561 [CrossRef][PubMed]
    [Google Scholar]
  57. van der Ploeg J. R., Eichhorn E., Leisinger T.. ( 2001;). Sulfonate-sulfur metabolism and its regulation in Escherichia coli. . Arch Microbiol176:1–8 [CrossRef][PubMed]
    [Google Scholar]
  58. Van Hamme J. D., Fedorak P. M., Foght J. M., Gray M. R., Dettman H. D.. ( 2004;). Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage. Appl Environ Microbiol70:1487–1493 [CrossRef][PubMed]
    [Google Scholar]
  59. Wang N., Szostek B., Folsom P. W., Sulecki L. M., Capka V., Buck R. C., Berti W. R., Gannon J. T.. ( 2005a;). Aerobic biotransformation of 14C-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant. Environ Sci Technol39:531–538 [CrossRef][PubMed]
    [Google Scholar]
  60. Wang N., Szostek B., Buck R. C., Folsom P. W., Sulecki L. M., Capka V., Berti W. R., Gannon J. T.. ( 2005b;). Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated carbon chains breakdown. Environ Sci Technol39:7516–7528 [CrossRef][PubMed]
    [Google Scholar]
  61. Wang N., Liu J., Buck R. C., Korzeniowski S. H., Wolstenholme B. W., Folsom P. W., Sulecki L. M.. ( 2011;). 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere82:853–858 [CrossRef][PubMed]
    [Google Scholar]
  62. Xu Y. R., Mortimer M. W., Fisher T. S., Kahn M. L., Brockman F. J., Xun L. Y.. ( 1997;). Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. J Bacteriol179:1112–1116[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068932-0
Loading
/content/journal/micro/10.1099/mic.0.068932-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error