1887

Abstract

Toxin–antitoxin (TA) systems are small genetic elements of prokaryotes associated with persister cell formation, phage defence, stress regulation and programmed cell arrest. In this study, we characterized two paralogues of the ribosome-dependent RNase YefM-YoeB TA system from the Gram-positive organism SE3. 5′ Rapid amplification of cDNA ends confirmed transcriptional activity in the exponential growth phase and revealed an extended 5′ untranslated region upstream of the - gene. Inducible expression of the putative toxins led to growth defects of , which were counteracted by simultaneous induction of the cognate / antitoxin candidates in a strictly pairwise manner. Bacterial two-hybrid assays revealed interaction between YoeB-seq1 and YefM-seq1 but not YoeB-seq1 and YefM-seq2, also indicating two independent systems. primer extensions demonstrated specific RNA cleavage adjacent to the start codons by YoeB-seq proteins, and YoeB-seq2 activity could be neutralized by the corresponding antitoxin YefM-seq2. Together, these results indicate that the two / paralogues from encode functional TA systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068049-0
2013-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1575.html?itemId=/content/journal/micro/10.1099/mic.0.068049-0&mimeType=html&fmt=ahah

References

  1. Amitai S., Yassin Y., Engelberg-Kulka H.. ( 2004;). MazF-mediated cell death in Escherichia coli: a point of no return. . J Bacteriol 186:, 8295–8300. [CrossRef][PubMed]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 0008. [CrossRef][PubMed]
    [Google Scholar]
  3. Carnio M. C., Höltzel A., Rudolf M., Henle T., Jung G., Scherer S.. ( 2000;). The macrocyclic peptide antibiotic micrococcin P1 is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese. . Appl Environ Microbiol 66:, 2378–2384. [CrossRef][PubMed]
    [Google Scholar]
  4. Chan W. T., Nieto C., Harikrishna J. A., Khoo S. K., Othman R. Y., Espinosa M., Yeo C. C.. ( 2011;). Genetic regulation of the yefM-yoeB toxin–antitoxin locus of Streptococcus pneumoniae. . J Bacteriol 193:, 4612–4625. [CrossRef][PubMed]
    [Google Scholar]
  5. Donegan N. P., Cheung A. L.. ( 2009;). Regulation of the mazEF toxin–antitoxin module in Staphylococcus aureus and its impact on sigB expression. . J Bacteriol 191:, 2795–2805. [CrossRef][PubMed]
    [Google Scholar]
  6. Fu Z., Donegan N. P., Memmi G., Cheung A. L.. ( 2007;). Characterization of MazFSa, an endoribonuclease from Staphylococcus aureus. . J Bacteriol 189:, 8871–8879. [CrossRef][PubMed]
    [Google Scholar]
  7. Grady R., Hayes F.. ( 2003;). Axe-Txe, a broad-spectrum proteic toxin–antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. . Mol Microbiol 47:, 1419–1432. [CrossRef][PubMed]
    [Google Scholar]
  8. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  9. Halfmann A., Hakenbeck R., Brückner R.. ( 2007;). A new integrative reporter plasmid for Streptococcus pneumoniae. . FEMS Microbiol Lett 268:, 217–224. [CrossRef][PubMed]
    [Google Scholar]
  10. Halvorsen E. M., Williams J. J., Bhimani A. J., Billings E. A., Hergenrother P. J.. ( 2011;). Txe, an endoribonuclease of the enterococcal Axe-Txe toxin–antitoxin system, cleaves mRNA and inhibits protein synthesis. . Microbiology 157:, 387–397. [CrossRef][PubMed]
    [Google Scholar]
  11. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580. [CrossRef][PubMed]
    [Google Scholar]
  12. Hanahan D.. ( 1985;). DNA Cloning 1: a Practical Approach. McLean, VA:: IRL Press;.
    [Google Scholar]
  13. Herbert S., Ziebandt A. K., Ohlsen K., Schäfer T., Hecker M., Albrecht D., Novick R., Götz F.. ( 2010;). Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. . Infect Immun 78:, 2877–2889. [CrossRef][PubMed]
    [Google Scholar]
  14. Irlinger F., Loux V., Bento P., Gibrat J. F., Straub C., Bonnarme P., Landaud S., Monnet C.. ( 2012;). Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. . J Bacteriol 194:, 5141–5142. [CrossRef][PubMed]
    [Google Scholar]
  15. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95:, 5752–5756. [CrossRef][PubMed]
    [Google Scholar]
  16. Magnuson R. D.. ( 2007;). Hypothetical functions of toxin–antitoxin systems. . J Bacteriol 189:, 6089–6092. [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  18. Moritz E. M., Hergenrother P. J.. ( 2007;). Toxin–antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. . Proc Natl Acad Sci U S A 104:, 311–316. [CrossRef][PubMed]
    [Google Scholar]
  19. Place R. B., Hiestand D., Gallmann H. R., Teuber M.. ( 2003;). Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. . Syst Appl Microbiol 26:, 30–37. [CrossRef][PubMed]
    [Google Scholar]
  20. Sayed N., Jousselin A., Felden B.. ( 2012a;). A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. . Nat Struct Mol Biol 19:, 105–112. [CrossRef][PubMed]
    [Google Scholar]
  21. Sayed N., Nonin-Lecomte S., Réty S., Felden B.. ( 2012b;). Functional and structural insights of a Staphylococcus aureus apoptotic-like membrane peptide from a toxin–antitoxin module. . J Biol Chem 287:, 43454–43463. [CrossRef][PubMed]
    [Google Scholar]
  22. Schleifer K.-H., Kilpper-Bälz R., Devriese L.. ( 1984;). Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. kloosii sp. nov.: three new coagulase-negative, novobiocin-resistant species from animals. . Syst Appl Microbiol 5:, 501–509. [CrossRef]
    [Google Scholar]
  23. Schuster C. F., Bertram R.. ( 2013;). Toxin–antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. . FEMS Microbiol Lett 340:, 73–85. [CrossRef][PubMed]
    [Google Scholar]
  24. Schuster C. F., Park J. H., Prax M., Herbig A., Nieselt K., Rosenstein R., Inouye M., Bertram R.. ( 2013;). Characterization of a mazEF toxin–antitoxin homologue from Staphylococcus equorum. . J Bacteriol 195:, 115–125. [CrossRef][PubMed]
    [Google Scholar]
  25. Serganov A., Nudler E.. ( 2013;). A decade of riboswitches. . Cell 152:, 17–24. [CrossRef][PubMed]
    [Google Scholar]
  26. Sevillano L., Díaz M., Yamaguchi Y., Inouye M., Santamaría R. I.. ( 2012;). Identification of the first functional toxin–antitoxin system in Streptomyces. . PLoS ONE 7:, e32977. [CrossRef][PubMed]
    [Google Scholar]
  27. Smith H. O., Levine M.. ( 1964;). Two sequential repressions of DNA synthesis in the establishment of lysogeny by phage P22 and its mutants. . Proc Natl Acad Sci U S A 52:, 356–363. [CrossRef][PubMed]
    [Google Scholar]
  28. Studier F. W., Moffatt B. A.. ( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. . J Mol Biol 189:, 113–130. [CrossRef][PubMed]
    [Google Scholar]
  29. Suzuki M., Zhang J., Liu M., Woychik N. A., Inouye M.. ( 2005;). Single protein production in living cells facilitated by an mRNA interferase. . Mol Cell 18:, 253–261. [CrossRef][PubMed]
    [Google Scholar]
  30. Yamaguchi Y., Park J. H., Inouye M.. ( 2011;). Toxin–antitoxin systems in bacteria and archaea. . Annu Rev Genet 45:, 61–79. [CrossRef][PubMed]
    [Google Scholar]
  31. Yoshizumi S., Zhang Y., Yamaguchi Y., Chen L., Kreiswirth B. N., Inouye M.. ( 2009;). Staphylococcus aureus YoeB homologues inhibit translation initiation. . J Bacteriol 191:, 5868–5872. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang Y., Inouye M.. ( 2009;). The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. . J Biol Chem 284:, 6627–6638. [CrossRef][PubMed]
    [Google Scholar]
  33. Zhu L., Inoue K., Yoshizumi S., Kobayashi H., Zhang Y., Ouyang M., Kato F., Sugai M., Inouye M.. ( 2009;). Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. . J Bacteriol 191:, 3248–3255. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068049-0
Loading
/content/journal/micro/10.1099/mic.0.068049-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error