1887

Abstract

The thermotolerant Gram-positive methylotroph is able to grow with methanol, glucose or mannitol as a sole carbon and energy source. Fructose 1,6-bisphosphate aldolase (FBA), a key enzyme of glycolysis and gluconeogenesis, is encoded in the genome of by two putative genes, the chromosomally located and on the naturally occurring plasmid pBM19. Their amino acid sequences share 75 % identity and suggest a classification as class II aldolases. Both enzymes were purified from recombinant and were found to be active as homotetramers. Both enzymes were activated by either manganese or cobalt ions, and inhibited by ADP, ATP and EDTA. The kinetic parameters allowed us to distinguish the chromosomally encoded FBA from the plasmid encoded FBA, since FBA showed higher affinity towards fructose 1,6-bisphosphate ( of 0.16±0.01 mM as compared to 2±0.08 mM) as well as higher glycolytic catalytic efficiency (31.3 as compared to 0.8 s mM) than FBA. However, FBA exhibited a higher catalytic efficiency in gluconeogenesis (50.4 as compared to 1.4 s mM with dihydroxyacetone phosphate and 4 as compared to 0.4 s mM with glyceraldehyde 3-phosphate as limiting substrate). The aldolase-negative mutant Δ could be complemented with both FBA genes from . Based on the kinetic data, we propose that FBA acts as major aldolase in glycolysis, whereas FBA acts as major aldolase in gluconeogenesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067314-0
2013-08-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/8/1770.html?itemId=/content/journal/micro/10.1099/mic.0.067314-0&mimeType=html&fmt=ahah

References

  1. Abe S., Takayarna K., Kinoshita S.( 1967). Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 13:279–301 [View Article]
    [Google Scholar]
  2. Anthony C.( 1986). Bacterial oxidation of methane and methanol. Adv Microb Physiol 27:113–210 [View Article][PubMed]
    [Google Scholar]
  3. Arfman N., Hektor H. J., Bystrykh L. V., Govorukhina N. I., Dijkhuizen L., Frank J.( 1997). Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.. Eur J Biochem 244:426–433 [View Article][PubMed]
    [Google Scholar]
  4. Bai N. J., Pai M. R., Murthy P. S., Venkitasubramanian T. A.( 1982). Fructose-bisphosphate aldolases from mycobacteria. Methods Enzymol 90:Pt E241–250 [View Article][PubMed]
    [Google Scholar]
  5. Baldwin S. A., Perham R. N.( 1978). Novel kinetic and structural properties of the class-I D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes’ strain). Biochem J 169:643–652[PubMed]
    [Google Scholar]
  6. Baldwin S. A., Perham R. N., Stribling D.( 1978). Purification and characterization of the class-II D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes’ strain). Biochem J 169:633–641[PubMed]
    [Google Scholar]
  7. Boldt R., Börner T., Schnarrenberger C.( 1992). Repression of the plastidic isoenzymes of aldolase, 3-phosphoglycerate kinase, and triosephosphate isomerase in the barley mutant ‘albostrians’. Plant Physiol 99:895–900 [View Article][PubMed]
    [Google Scholar]
  8. Boles E., Zimmermann F. K.( 1993). Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster.. Curr Genet 23:187–191 [View Article][PubMed]
    [Google Scholar]
  9. Brautaset T., Williams M. D., Dillingham R. D., Kaufmann C., Bennaars A., Crabbe E., Flickinger M. C.( 2003). Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants. Appl Environ Microbiol 69:3986–3995 [View Article][PubMed]
    [Google Scholar]
  10. Brautaset T., Jakobsen Ø. M., Flickinger M. C., Valla S., Ellingsen T. E.( 2004). Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.. J Bacteriol 186:1229–1238 [View Article][PubMed]
    [Google Scholar]
  11. Brautaset T., Jakobsen Ø. M., Josefsen K. D., Flickinger M. C., Ellingsen T. E.( 2007). Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 °C. Appl Microbiol Biotechnol 74:22–34 [View Article][PubMed]
    [Google Scholar]
  12. Brautaset T., Jakobsen Ø. M., Degnes K. F., Netzer R., Naerdal I., Krog A., Dillingham R., Flickinger M. C., Ellingsen T. E.( 2010). Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 ° C. Appl Microbiol Biotechnol 87:951–964 [View Article][PubMed]
    [Google Scholar]
  13. Burgess S. C., Hausler N., Merritt M., Jeffrey F. M., Storey C., Milde A., Koshy S., Lindner J., Magnuson M. A.& other authors ( 2004). Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279:48941–48949 [View Article][PubMed]
    [Google Scholar]
  14. Cue D., Lam H., Dillingham R. L., Hanson R. S., Flickinger M. C.( 1997). Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph. Appl Environ Microbiol 63:1406–1420[PubMed]
    [Google Scholar]
  15. de Vries G. E., Arfman N., Terpstra P., Dijkhuizen L.( 1992). Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J Bacteriol 174:5346–5353[PubMed]
    [Google Scholar]
  16. Eggeling L., Bott M.(editors) ( 2005). Handbook of Corynebacterium glutamicum Boca Raton, FL: CRC Press; [View Article]
    [Google Scholar]
  17. Ertunga N. S., Colak A., Belduz A. O., Canakci S., Karaoglu H., Sandalli C.( 2007). Cloning, expression, purification and characterization of fructose-1,6-bisphosphate aldolase from Anoxybacillus gonensis G2. J Biochem 141:817–825 [View Article][PubMed]
    [Google Scholar]
  18. Ferenci T., Strom T., Quayle J. R.( 1974). Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus.. Biochem J 144:477–486[PubMed]
    [Google Scholar]
  19. Fernández-Sousa J. M., Gavilanes F. G., Gavilanes J. G., Paredes J. A.( 1978). D-Fructose 1,6-biphosphate aldolase from the dipteran Ceratitis capitata. Purification, physiocochemical and enzymic properties. Arch Biochem Biophys 188:456–465 [View Article][PubMed]
    [Google Scholar]
  20. Flechner A., Gross W., Martin W. F., Schnarrenberger C.( 1999). Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. FEBS Lett 447:200–202 [View Article][PubMed]
    [Google Scholar]
  21. Galkin A., Kulakova L., Melamud E., Li L., Wu C., Mariano P., Dunaway-Mariano D., Nash T. E., Herzberg O.( 2007). Characterization, kinetics, and crystal structures of fructose-1,6-bisphosphate aldolase from the human parasite, Giardia lamblia.. J Biol Chem 282:4859–4867 [View Article][PubMed]
    [Google Scholar]
  22. Goenrich M., Thauer R. K., Yurimoto H., Kato N.( 2005). Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri: a possible function in ribose-5-phosphate biosynthesis. Arch Microbiol 184:41–48 [View Article][PubMed]
    [Google Scholar]
  23. Götz F., Fischer S., Schleifer K. H.( 1980). Purification and characterisation of an unusually heat-stable and acid/base-stable class I fructose-1,6-bisphosphate aldolase from Staphylococcus aureus.. Eur J Biochem 108:295–301 [View Article][PubMed]
    [Google Scholar]
  24. Gross W., Bayer M. G., Schnarrenberger C., Gebhart U. B., Maier T. L., Schenk H.( 1994). Two distinct aldolases of class II type in the cyanoplasts and in the cytosol of the alga Cyanophora paradoxa.. Plant Physiol 105:1393–1398[PubMed]
    [Google Scholar]
  25. Gross W., Lenze D., Nowitzki U., Weiske J., Schnarrenberger C.( 1999). Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria.. Gene 230:7–14 [View Article][PubMed]
    [Google Scholar]
  26. Haima P., van Sinderen D., Bron S., Venema G.( 1990). An improved beta-galactosidase alpha-complementation system for molecular cloning in Bacillus subtilis.. Gene 93:41–47 [View Article][PubMed]
    [Google Scholar]
  27. Hanahan D.( 1985). Techniques for transformation of E. coli. DNA Cloning: a Practical Approach vol. 1109–135 Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  28. Heggeset T. M., Krog A., Balzer S., Wentzel A., Ellingsen T. E., Brautaset T.( 2012). Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 78:5170–5181 [View Article][PubMed]
    [Google Scholar]
  29. Hektor H. J., Kloosterman H., Dijkhuizen L.( 2002). Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus.. J Biol Chem 277:46966–46973 [View Article][PubMed]
    [Google Scholar]
  30. Izard T., Sygusch J.( 2004). Induced fit movements and metal cofactor selectivity of class II aldolases: structure of Thermus aquaticus fructose-1,6-bisphosphate aldolase. J Biol Chem 279:11825–11833 [View Article][PubMed]
    [Google Scholar]
  31. Jakobsen O. M., Benichou A., Flickinger M. C., Valla S., Ellingsen T. E., Brautaset T.( 2006). Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus.. J Bacteriol 188:3063–3072 [View Article][PubMed]
    [Google Scholar]
  32. Jakobsen O. M., Brautaset T., Degnes K. F., Heggeset T. M., Balzer S., Flickinger M. C., Valla S., Ellingsen T. E.( 2009). Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.. Appl Environ Microbiol 75:652–661 [View Article][PubMed]
    [Google Scholar]
  33. Kato N., Yurimoto H., Thauer R. K.( 2006). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70:10–21 [View Article][PubMed]
    [Google Scholar]
  34. Krog A., Heggeset T. M. B., Müller J. E. N., Kupper C. E., Schneider O., Vorholt J. A., Ellingsen T. E., Brautaset T.( 2013). Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS ONE 8:e59188 [View Article][PubMed]
    [Google Scholar]
  35. Labbé G., de Groot S., Rasmusson T., Milojevic G., Dmitrienko G. I., Guillemette J. G.( 2011). Evaluation of four microbial class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts. Protein Expr Purif 80:224–233 [View Article][PubMed]
    [Google Scholar]
  36. Laemmli U. K.( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  37. Lindner S. N., Vidaurre D., Willbold S., Schoberth S. M., Wendisch V. F.( 2007). NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.. Appl Environ Microbiol 73:5026–5033 [View Article][PubMed]
    [Google Scholar]
  38. Meijer W. G., Enequist H. G., Terpstra P., Dijkhuizen L.( 1990). Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14. J Gen Microbiol 136:2225–2230 [View Article][PubMed]
    [Google Scholar]
  39. Nakahara K., Yamamoto H., Miyake C., Yokota A.( 2003). Purification and characterization of class-I and class-II fructose-1,6-bisphosphate aldolases from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 44:326–333 [View Article][PubMed]
    [Google Scholar]
  40. Penhoet E., Rajkumar T., Rutter W. J.( 1966). Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci U S A 56:1275–1282 [View Article][PubMed]
    [Google Scholar]
  41. Peters-Wendisch P. G., Wendisch V. F., de Graaf A. A., Eikmanns B. J., Sahm H.( 1996). C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum.. Arch Microbiol 165:387–396 [View Article][PubMed]
    [Google Scholar]
  42. Plater A. R., Zgiby S. M., Thomson G. J., Qamar S., Wharton C. W., Berry A.( 1999). Conserved residues in the mechanism of the E. coli class II FBP-aldolase. J Mol Biol 285:843–855 [View Article][PubMed]
    [Google Scholar]
  43. Plaumann M., Pelzer-Reith B., Martin W. F., Schnarrenberger C.( 1997). Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis.. Curr Genet 31:430–438 [View Article][PubMed]
    [Google Scholar]
  44. Pluschkell S. B., Flickinger M. C.( 2002). Dissimilation of [13C]methanol by continuous cultures of Bacillus methanolicus MGA3 at 50 °C studied by 13C NMR and isotope-ratio mass spectrometry. Microbiology 148:3223–3233[PubMed]
    [Google Scholar]
  45. Rittmann D., Schaffer S., Wendisch V. F., Sahm H.( 2003). Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292 [View Article][PubMed]
    [Google Scholar]
  46. Rozova O. N., Khmelenina V. N., Mustakhimov I. I., Reshetnikov A. S., Trotsenko Y. A.( 2010). Characterization of recombinant fructose-1,6-bisphosphate aldolase from Methylococcus capsulatus Bath. Biochemistry (Mosc) 75:892–898 [View Article][PubMed]
    [Google Scholar]
  47. Rutter W. J.( 1964). Evolution of aldolase. Fed Proc 23:1248–1257[PubMed]
    [Google Scholar]
  48. Sadoff H. L., Hitchins A. D., Celikkol E.( 1969). Properties of fructose 1,6-diphosphate aldolases from spores and vegetative cells of Bacillus cereus.. J Bacteriol 98:1208–1218[PubMed]
    [Google Scholar]
  49. Sambrook J., Russell D.( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratoy;
    [Google Scholar]
  50. Sánchez L., Horner D., Moore D., Henze K., Embley T., Müller M.( 2002). Fructose-1,6-bisphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. Gene 295:51–59 [View Article][PubMed]
    [Google Scholar]
  51. Sauvé V., Sygusch J.( 2001). Molecular cloning, expression, purification, and characterization of fructose-1,6-bisphosphate aldolase from Thermus aquaticus.. Protein Expr Purif 21:293–302 [View Article][PubMed]
    [Google Scholar]
  52. Say R. F., Fuchs G.( 2010). Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081 [View Article][PubMed]
    [Google Scholar]
  53. Schäfer A., Kalinowski J., Pühler A.( 1994). Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 60:756–759[PubMed]
    [Google Scholar]
  54. Schendel F. J., Bremmon C. E., Flickinger M. C., Guettler M., Hanson R. S.( 1990). L-lysine production at 50 °C by mutants of a newly isolated and characterized methylotrophic Bacillus sp. Appl Environ Microbiol 56:963–970[PubMed]
    [Google Scholar]
  55. Schrader J., Schilling M., Holtmann D., Sell D., Filho M. V., Marx A., Vorholt J. A.( 2009). Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:107–115 [View Article][PubMed]
    [Google Scholar]
  56. Stansen C., Uy D., Delaunay S., Eggeling L., Goergen J. L., Wendisch V. F.( 2005). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928 [View Article][PubMed]
    [Google Scholar]
  57. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.( 1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89 [View Article][PubMed]
    [Google Scholar]
  58. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.( 1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  59. Ujita S., Kimura K.( 1982). Fructose-1,6-bisphosphate aldolase from Bacillus subtilis.. Methods Enzymol 90:Pt E235–241 [View Article][PubMed]
    [Google Scholar]
  60. von der Osten C. H., Barbas C. F. III, Wong C.-H., Sinskey A. J.( 1989). Molecular cloning, nucleotide sequence and fine-structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1,6-biphosphate aldolase to class I and class II aldolases. Mol Microbiol 3:1625–1637 [View Article][PubMed]
    [Google Scholar]
  61. Witke C., Götz F.( 1993). Cloning, sequencing, and characterization of the gene encoding the class I fructose-1,6-bisphosphate aldolase of Staphylococcus carnosus.. J Bacteriol 175:7495–7499[PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.067314-0
Loading
/content/journal/micro/10.1099/mic.0.067314-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error