1887

Abstract

The genome of , the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens and . In these latter pathogens, a cluster of regulation of pathogenicity factors () genes encodes the DSF system and is involved in control of various cellular processes. Mutation of , encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of and (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when and were both deleted. Similar results were obtained when the entire region was deleted. Surprisingly, when the pathogen was mutated in or (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065748-0
2013-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1149.html?itemId=/content/journal/micro/10.1099/mic.0.065748-0&mimeType=html&fmt=ahah

References

  1. Barber C. E., Tang J. L., Feng J. X., Pan M. Q., Wilson T. J. G., Slater H., Dow J. M., Williams P., Daniels M. J..( 1997;). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol24:555–566 [CrossRef][PubMed]
    [Google Scholar]
  2. Birch R. G..( 2001;). Xanthomonas albilineans and the antipathogenesis approach to disease control. Mol Plant Pathol2:1–11 [CrossRef][PubMed]
    [Google Scholar]
  3. Castañeda A., Reddy J. D., El-Yacoubi B., Gabriel D. W..( 2005;). Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol Plant Microbe Interact18:1306–1317 [CrossRef][PubMed]
    [Google Scholar]
  4. Champoiseau P., Daugrois J.-H., Girard J.-C., Royer M., Rott P. C..( 2006;). Variation in albicidin biosynthesis genes and in pathogenicity of Xanthomonas albilineans, the sugarcane leaf scald pathogen. Phytopathology96:33–45 [CrossRef][PubMed]
    [Google Scholar]
  5. Chatterjee S., Almeida R. P. P., Lindow S. E..( 2008a;). Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.. Annu Rev Phytopathol46:243–271 [CrossRef][PubMed]
    [Google Scholar]
  6. Chatterjee S., Newman K. L., Lindow S. E..( 2008b;). Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant Microbe Interact21:1309–1315 [CrossRef][PubMed]
    [Google Scholar]
  7. Chatterjee S., Wistrom C., Lindow S. E..( 2008c;). A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa.. Proc Natl Acad Sci U S A105:2670–2675 [CrossRef][PubMed]
    [Google Scholar]
  8. Chatterjee S., Killiny N., Almeida R. P. P., Lindow S. E..( 2010;). Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Mol Plant Microbe Interact23:1356–1363 [CrossRef][PubMed]
    [Google Scholar]
  9. Danhorn T., Fuqua C..( 2007;). Biofilm formation by plant-associated bacteria. Annu Rev Microbiol61:401–422 [CrossRef][PubMed]
    [Google Scholar]
  10. Daugrois J.-H., Dumont V., Champoiseau P., Costet L., Boisne-Noc R., Rott P..( 2003;). Aerial contamination of sugarcane in Guadeloupe by two strains of Xanthomonas albilineans.. Eur J Plant Pathol109:445–458 [CrossRef]
    [Google Scholar]
  11. Daugrois J.-H., Boisne-Noc R., Champoiseau P., Rott P..( 2012;). The revisited infection cycle of Xanthomonas albilineans, the causal agent of leaf scald of sugarcane. Func Plant Sci Biotech6:()91–97
    [Google Scholar]
  12. Davis M. J., Rott P., Baudin P., Dean J. L..( 1994;). Evaluation of selective media and immunoassays for detection of Xanthomonas albilineans, causal agent of sugarcane leaf scald disease. Plant Dis78:78–82 [CrossRef]
    [Google Scholar]
  13. De Feyter R., Gabriel D. W..( 1991;). Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum.. J Bacteriol173:6421–6427[PubMed]
    [Google Scholar]
  14. De Feyter R., Yang Y., Gabriel D. W..( 1993;). Gene-for-gene interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant Microbe Interact6:225–237 [CrossRef][PubMed]
    [Google Scholar]
  15. Dow M..( 2008;). Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal1:pe23 [CrossRef][PubMed]
    [Google Scholar]
  16. Dow J. M., Crossman L., Findlay K., He Y.-Q., Feng J.-X., Tang J.-L..( 2003;). Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A100:10995–11000 [CrossRef][PubMed]
    [Google Scholar]
  17. Fouhy Y., Scanlon K., Schouest K., Spillane C., Crossman L., Avison M. B., Ryan R. P., Dow J. M..( 2007;). Diffusible signal factor-dependent cell–cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia.. J Bacteriol189:4964–4968 [CrossRef][PubMed]
    [Google Scholar]
  18. Geier G. E., Modrich P..( 1979;). Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of DpnI endonuclease. J Biol Chem254:1408–1413[PubMed]
    [Google Scholar]
  19. Guo Y., Zhang Y., Li J.-L., Wang N..( 2012;). Diffusible signal factor-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri.. Mol Plant Microbe Interact25:165–179 [CrossRef][PubMed]
    [Google Scholar]
  20. He Y.-W., Zhang L.-H..( 2008;). Quorum sensing and virulence regulation in Xanthomonas campestris.. FEMS Microbiol Rev32:842–857 [CrossRef][PubMed]
    [Google Scholar]
  21. He Y.-W., Xu M., Lin K., Ng Y. J., Wen C.-M., Wang L.-H., Liu Z.-D., Zhang H.-B., Dong Y.-H..& other authors ( 2006;). Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell–cell communication-dependent genes and functions. Mol Microbiol59:610–622 [CrossRef][PubMed]
    [Google Scholar]
  22. He Y.-W., Wu J., Cha J. S., Zhang L.-H..( 2010;). Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol10:187 [CrossRef][PubMed]
    [Google Scholar]
  23. Klett P., Rott P..( 1994;). Inoculum sources for the spread of leaf scald disease of sugarcane caused by Xanthomonas albilineans in Guadeloupe. J Phytopathol142:283–291 [CrossRef]
    [Google Scholar]
  24. Li Y., Hao G., Galvani C. D., Meng Y., De La Fuente L., Hoch H. C., Burr T. J..( 2007;). Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell–cell aggregation. Microbiology153:719–726 [CrossRef][PubMed]
    [Google Scholar]
  25. Marguerettaz M., Pieretti I., Gayral P., Puig J., Brin C., Cociancich S., Poussier S., Rott P., Royer M..( 2011;). Genomic and evolutionary features of the SPI-1 type III secretion system that is present in Xanthomonas albilineans but is not essential for xylem colonization and symptom development of sugarcane leaf scald. Mol Plant Microbe Interact24:246–259 [CrossRef][PubMed]
    [Google Scholar]
  26. Newman K. L., Almeida R. P. P., Purcell A. H., Lindow S. E..( 2004;). Cell–cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci U S A101:1737–1742 [CrossRef][PubMed]
    [Google Scholar]
  27. Pieretti I., Royer M., Barbe V., Carrere S., Koebnik R., Cociancich S., Couloux A., Darrasse A., Gouzy J..& other authors ( 2009;). The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics10:616 [CrossRef][PubMed]
    [Google Scholar]
  28. Pieretti I., Royer M., Barbe V., Carrere S., Koebnik R., Couloux A., Darrasse A., Gouzy J., Jacques M.-A..& other authors ( 2012;). Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels. BMC Genomics13:658 [CrossRef][PubMed]
    [Google Scholar]
  29. Ricaud C., Ryan C. C..( 1989;). Leaf scald. Diseases of Sugarcane. Major Diseases39–58 Ricaud C., Egan B. T., Gillaspie A. G. Jr, Hughes C. G.. Amsterdam, The Netherlands: Elsevier Science Publishers; [CrossRef]
    [Google Scholar]
  30. Rott P., Davis M. J..( 2000;). Leaf scald. A Guide to Sugarcane Diseases38–44 Rott P., Bailey R. A., Comstock J. C., Croft B. J., Saumtally A. S.. Montpellier, France: La Librairie du Cirad;
    [Google Scholar]
  31. Rott P., Abel M., Soupa D., Feldmann P., Letourmy P..( 1994;). Population dynamics of Xanthomonas albilineans in sugarcane plants as determined with an antibiotic-resistant mutant. Plant Dis78:241–247 [CrossRef]
    [Google Scholar]
  32. Rott P., Mohamed I. S., Klett P., Soupa D., de Saint-Albin A., Feldmann P., Letourmy P..( 1997;). Resistance to leaf scald disease is associated with limited colonization of sugarcane and wild relatives by Xanthomonas albilineans.. Phytopathology87:1202–1213 [CrossRef][PubMed]
    [Google Scholar]
  33. Rott P., Fleites L., Marlow G., Royer M., Gabriel D. W..( 2011;). Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis. Mol Plant Microbe Interact24:594–605 [CrossRef][PubMed]
    [Google Scholar]
  34. Ryan R. P., Dow J. M..( 2011;). Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol19:145–152 [CrossRef][PubMed]
    [Google Scholar]
  35. Ryan R. P., McCarthy Y., Andrade M., Farah C. S., Armitage J. P., Dow J. M..( 2010;). Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris.. Proc Natl Acad Sci U S A107:5989–5994 [CrossRef][PubMed]
    [Google Scholar]
  36. Ryan R. P., McCarthy Y., Kiely P. A., O’Connor R., Farah C. S., Armitage J. P., Dow J. M..( 2012;). Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris.. Mol Microbiol86:557–567 [CrossRef][PubMed]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Siciliano F., Torres P., Sendin L., Bermejo C., Filippone P., Vellice G., Ramallo J., Castagnaro A., Vojnov A., Marano M. R..( 2006;). Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon.. Electron J Biotechnol9:199–204 [CrossRef]
    [Google Scholar]
  39. Slater H., Alvarez-Morales A., Barber C. E., Daniels M. J., Dow J. M..( 2000;). A two-component system involving an HD-GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris.. Mol Microbiol38:986–1003 [CrossRef][PubMed]
    [Google Scholar]
  40. Sun L., Wu M., Chen H., He C..( 2010;). Diffusible signal factor production and virulence expression in ΔrpfFxoo, ΔrpfCxoo and ΔrpfGxoo, the gene deletion mutants of DSF/Rpf signaling proteins of Xanthomonas oryzae pv. oryzae.. Acta Microbiol Sin50:717–723
    [Google Scholar]
  41. Tang J. L., Liu Y. N., Barber C. E., Dow J. M., Wootton J. C., Daniels M. J..( 1991;). Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris.. Mol Gen Genet226:409–417 [CrossRef][PubMed]
    [Google Scholar]
  42. Thowthampitak J., Shaffer B. T., Prathuangwong S., Loper J. E..( 2008;). Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. Phytopathology98:1252–1260 [CrossRef][PubMed]
    [Google Scholar]
  43. Torres P. S., Malamud F., Rigano L. A., Russo D. M., Marano M. R., Castagnaro A. P., Zorreguieta A., Bouarab K., Dow J. M., Vojnov A. A..( 2007;). Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris.. Environ Microbiol9:2101–2109 [CrossRef][PubMed]
    [Google Scholar]
  44. Wang L.-H., He Y., Gao Y., Wu J. E., Dong Y.-H., He C., Wang S. X., Weng L.-X., Xu J.-L..& other authors ( 2004;). A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol51:903–912 [CrossRef][PubMed]
    [Google Scholar]
  45. Wang N., Li J.-L., Lindow S. E..( 2012;). RpfF-dependent regulon of Xylella fastidiosa.. Phytopathology102:1045–1053 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065748-0
Loading
/content/journal/micro/10.1099/mic.0.065748-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error