1887

Abstract

Previous studies have demonstrated that strains are not only capable of growth on a wide range of organic substrates, but also chemotactic towards many of these compounds. However, in most cases the specific chemoreceptors that are involved have not been identified. The complete genome sequences of strains F1 and KT2440 revealed that each strain is predicted to encode 27 methyl-accepting chemotaxis proteins (MCPs) or MCP-like proteins, 25 of which are shared by both strains. It was expected that orthologous MCPs in closely related strains of the same species would be functionally equivalent. However, deletion of the gene encoding the F1 orthologue (locus tag Pput_4520, designated ) of McpS, a known receptor for organic acids in KT2440, did not result in an obvious chemotaxis phenotype. Therefore, we constructed individual markerless MCP gene deletion mutants in F1 and screened for defective sensory responses to succinate, malate, fumarate and citrate. This screen resulted in the identification of a receptor, McfQ (locus tag Pput_4894), which responds to citrate and fumarate. An additional receptor, McfR (locus tag Pput_0339), which detects succinate, malate and fumarate, was found by individually expressing each of the 18 genes encoding canonical MCPs from strain F1 in a KT2440 -deletion mutant. Expression of in the same deletion mutant demonstrated that, like McfR, McfS responds to succinate, malate, citrate and fumarate. Therefore, at least three receptors, McfR, McfS, and McfQ, work in concert to detect organic acids in F1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065698-0
2013-06-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1086.html?itemId=/content/journal/micro/10.1099/mic.0.065698-0&mimeType=html&fmt=ahah

References

  1. Adereth Y., Champion K. J., Hsu T., Dammai V.. ( 2005;). Site-directed mutagenesis using Pfu DNA polymerase and T4 DNA ligase. . Biotechniques 38:, 864–868. [CrossRef][PubMed]
    [Google Scholar]
  2. Alvarez-Ortega C., Harwood C. S.. ( 2007;). Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. . Appl Environ Microbiol 73:, 7793–7795. [CrossRef][PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1993;). Current Protocols in Molecular Biology. New York:: John Wiley & Sons, Inc;.
    [Google Scholar]
  4. Combet C., Blanchet C., Geourjon C., Deléage G.. ( 2000;). [email protected]: network protein sequence analysis. . Trends Biochem Sci 25:, 147–150. [CrossRef][PubMed]
    [Google Scholar]
  5. Davis R. W., Botstein D., Roth J. R.. ( 1980;). Advanced Bacterial Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  6. Ditty J. L., Williams K. M., Keller M. M., Chen G. Y., Liu X., Parales R. E.. ( 2013;). Integrating grant-funded research into the undergraduate curriculum using IMG-ACT. . Biochem Mol Biol Ed 41:, 16–23. [CrossRef][PubMed]
    [Google Scholar]
  7. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A.. ( 1997;). The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. . Annu Rev Cell Dev Biol 13:, 457–512. [CrossRef][PubMed]
    [Google Scholar]
  8. Finette B. A., Subramanian V., Gibson D. T.. ( 1984;). Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. . J Bacteriol 160:, 1003–1009.[PubMed]
    [Google Scholar]
  9. Franklin F. C. H., Bagdasarian M., Bagdasarian M. M., Timmis K. N.. ( 1981;). Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. . Proc Natl Acad Sci U S A 78:, 7458–7462. [CrossRef][PubMed]
    [Google Scholar]
  10. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J.. ( 1970;). Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida.. Biochemistry 9:, 1626–1630. [CrossRef][PubMed]
    [Google Scholar]
  11. Grimm A. C., Harwood C. S.. ( 1997;). Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. . Appl Environ Microbiol 63:, 4111–4115.[PubMed]
    [Google Scholar]
  12. Grimm A. C., Harwood C. S.. ( 1999;). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. . J Bacteriol 181:, 3310–3316.[PubMed]
    [Google Scholar]
  13. Harwood C. S., Rivelli M., Ornston L. N.. ( 1984;). Aromatic acids are chemoattractants for Pseudomonas putida.. J Bacteriol 160:, 622–628.[PubMed]
    [Google Scholar]
  14. Harwood C. S., Parales R. E., Dispensa M.. ( 1990;). Chemotaxis of Pseudomonas putida toward chlorinated benzoates. . Appl Environ Microbiol 56:, 1501–1503.[PubMed]
    [Google Scholar]
  15. Hazelbauer G. L., Lai W. C.. ( 2010;). Bacterial chemoreceptors: providing enhanced features to two-component signaling. . Curr Opin Microbiol 13:, 124–132. [CrossRef][PubMed]
    [Google Scholar]
  16. Hazelbauer G. L., Falke J. J., Parkinson J. S.. ( 2008;). Bacterial chemoreceptors: high-performance signaling in networked arrays. . Trends Biochem Sci 33:, 9–19. [CrossRef][PubMed]
    [Google Scholar]
  17. Horton R. M., Ho S. N., Pullen J. K., Hunt H. D., Cai Z., Pease L. R.. ( 1993;). Gene splicing by overlap extension. . Methods Enzymol 217:, 270–279. [CrossRef][PubMed]
    [Google Scholar]
  18. Iwaki H., Muraki T., Ishihara S., Hasegawa Y., Rankin K. N., Sulea T., Boyd J., Lau P. C. K.. ( 2007;). Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. . J Bacteriol 189:, 3502–3514. [CrossRef][PubMed]
    [Google Scholar]
  19. Kato J., Nakamura T., Kuroda A., Ohtake H.. ( 1999;). Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa.. Biosci Biotechnol Biochem 63:, 155–161. [CrossRef][PubMed]
    [Google Scholar]
  20. Khan S. R., Gaines J., Roop R. M. II, Farrand S. K.. ( 2008;). Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. . Appl Environ Microbiol 74:, 5053–5062. [CrossRef][PubMed]
    [Google Scholar]
  21. Kuroda A., Kumano T., Taguchi K., Nikata T., Kato J., Ohtake H.. ( 1995;). Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa.. J Bacteriol 177:, 7019–7025.[PubMed]
    [Google Scholar]
  22. Lacal J., Alfonso C., Liu X., Parales R. E., Morel B., Conejero-Lara F., Rivas G., Duque E., Ramos J. L., Krell T.. ( 2010a;). Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. . J Biol Chem 285:, 23126–23136. [CrossRef][PubMed]
    [Google Scholar]
  23. Lacal J., García-Fontana C., Muñoz-Martínez F., Ramos J. L., Krell T.. ( 2010b;). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. . Environ Microbiol 12:, 2873–2884. [CrossRef][PubMed]
    [Google Scholar]
  24. Lacal J., Muñoz-Martínez F., Reyes-Darías J. A., Duque E., Matilla M., Segura A., Calvo J. J., Jímenez-Sánchez C., Krell T., Ramos J. L.. ( 2011;). Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas.. Environ Microbiol 13:, 1733–1744. [CrossRef][PubMed]
    [Google Scholar]
  25. Liu X.. ( 2009;). Chemotaxis to pyrimidines and s-triazines in Pseudomonas and Escherichia coli. . Ph.D. Dissertation. University of California, Davis:.
  26. Liu X., Wood P. L., Parales J. V., Parales R. E.. ( 2009;). Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida.. J Bacteriol 191:, 2909–2916. [CrossRef][PubMed]
    [Google Scholar]
  27. Luu R. A., Schneider B. J., Ho C. C.., Nesteryuk V., Ngwesse S. E., Liu X., Parales J. V., Ditty J. L., Parales R. E.. ( 2013;). Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2. . Appl Environ Microbiol 79:, 2416–2423. [CrossRef][PubMed]
    [Google Scholar]
  28. Nichols N. N., Harwood C. S.. ( 2000;). An aerotaxis transducer gene from Pseudomonas putida.. FEMS Microbiol Lett 182:, 177–183. [CrossRef][PubMed]
    [Google Scholar]
  29. Oku S., Komatsu A., Tajima T., Nakashimada Y., Kato J.. ( 2012;). Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. . Microbes Environ 27:, 462–469. [CrossRef][PubMed]
    [Google Scholar]
  30. Parales R. E.. ( 2004;). Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. . Appl Environ Microbiol 70:, 285–292. [CrossRef][PubMed]
    [Google Scholar]
  31. Parales R. E., Ditty J. L., Harwood C. S.. ( 2000;). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. . Appl Environ Microbiol 66:, 4098–4104. [CrossRef][PubMed]
    [Google Scholar]
  32. Parales R. E., Ferrandez A., Harwood C. S.. ( 2004;). Chemotaxis in Pseudomonads. . In Pseudomonas Volume I: Genomics, Life Style and Molecular Architecture, pp. 793–815. Edited by Ramos J.-L... New York:: Kluwer Academic/Plenum Publishers;.
    [Google Scholar]
  33. Parkinson J. S.. ( 2007;). A “bucket of light” for viewing bacterial colonies in soft agar. . Methods Enzymol 423:, 432–435. [CrossRef][PubMed]
    [Google Scholar]
  34. Pineda-Molina E., Reyes-Darias J.-A., Lacal J., Ramos J. L., García-Ruiz J. M., Gavira J. A., Krell T.. ( 2012;). Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. . Proc Natl Acad Sci U S A 109:, 18926–18931. [CrossRef][PubMed]
    [Google Scholar]
  35. Roberts M. A., Papachristodoulou A., Armitage J. P.. ( 2010;). Adaptation and control circuits in bacterial chemotaxis. . Biochem Soc Trans 38:, 1265–1269. [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Fritch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, New York:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  37. Sarand I., Osterberg S., Holmqvist S., Holmfeldt P., Skärfstad E., Parales R. E., Shingler V.. ( 2008;). Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida.. Environ Microbiol 10:, 1320–1334. [CrossRef][PubMed]
    [Google Scholar]
  38. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. . Bio/Technology 1:, 784–791. [CrossRef]
    [Google Scholar]
  39. Sourjik V., Armitage J. P.. ( 2010;). Spatial organization in bacterial chemotaxis. . EMBO J 29:, 2724–2733. [CrossRef][PubMed]
    [Google Scholar]
  40. Stanier R. Y., Palleroni N. J., Doudoroff M.. ( 1966;). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef][PubMed]
    [Google Scholar]
  41. Szurmant H., Ordal G. W.. ( 2004;). Diversity in chemotaxis mechanisms among the bacteria and archaea. . Microbiol Mol Biol Rev 68:, 301–319. [CrossRef][PubMed]
    [Google Scholar]
  42. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H.. ( 1997;). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa.. Microbiology 143:, 3223–3229. [CrossRef][PubMed]
    [Google Scholar]
  43. Ulrich L. E., Zhulin I. B.. ( 2005;). Four-helix bundle: a ubiquitous sensory module in prokaryotic signal transduction. . Bioinformatics 21: (Suppl 3), iii45–iii48. [CrossRef][PubMed]
    [Google Scholar]
  44. Wadhams G. H., Armitage J. P.. ( 2004;). Making sense of it all: bacterial chemotaxis. . Nat Rev Mol Cell Biol 5:, 1024–1037. [CrossRef][PubMed]
    [Google Scholar]
  45. White A. K., Metcalf W. W.. ( 2004;). The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon. . J Bacteriol 186:, 5876–5882. [CrossRef][PubMed]
    [Google Scholar]
  46. Wu H., Kato J., Kuroda A., Ikeda T., Takiguchi N., Ohtake H.. ( 2000;). Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa.. J Bacteriol 182:, 3400–3404. [CrossRef][PubMed]
    [Google Scholar]
  47. Yamamoto K., Imae Y.. ( 1993;). Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. . Proc Natl Acad Sci U S A 90:, 217–221. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065698-0
Loading
/content/journal/micro/10.1099/mic.0.065698-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error