1887

Abstract

is the most common bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness in developing countries. Tetracycline is commonly the drug of choice for treating infections, but cases of antibiotic resistance in clinical isolates have previously been reported. Here, we used antibiotic resistance assays and whole-genome sequencing to interrogate the hypothesis that two clinical isolates (IU824 and IU888) have acquired mechanisms of antibiotic resistance. Immunofluorescence staining was used to identify inclusions in cell cultures grown in the presence of tetracycline; however, only antibiotic-free control cultures yielded the strong fluorescence associated with the presence of chlamydial inclusions. Infectivity was lost upon passage of harvested cultures grown in the presence of tetracycline into antibiotic-free medium, so we conclude that these isolates were phenotypically sensitive to tetracycline. Comparisons of the genome and plasmid sequences for the two isolates with tetracycline-sensitive strains did not identify regions of low sequence identity that could accommodate horizontally acquired resistance genes, and the tetracycline binding region of the 16S rRNA gene was identical to that of the sensitive control strains. The gene of strain IU824, however, was found to contain a premature stop codon not previously identified, which is noteworthy but unlikely to be related to tetracycline resistance. In conclusion, we found no evidence of tetracycline resistance in the two strains investigated, and it seems most likely that the small, aberrant inclusions previously identified resulted from the high chlamydial load used in the original antibiotic resistance assays.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065391-0
2013-04-01
2021-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/748.html?itemId=/content/journal/micro/10.1099/mic.0.065391-0&mimeType=html&fmt=ahah

References

  1. Andersson S. G., Alsmark C., Canbäck B., Davids W., Frank C., Karlberg O., Klasson L., Antoine-Legault B., Mira A., Tamas I.. ( 2002;). Comparative genomics of microbial pathogens and symbionts. Bioinformatics18:Suppl. 2S17 [CrossRef][PubMed]
    [Google Scholar]
  2. Assefa S., Keane T. M., Otto T. D., Newbold C., Berriman M.. ( 2009;). abacas: algorithm-based automatic contiguation of assembled sequences. Bioinformatics25:1968–1969 [CrossRef][PubMed]
    [Google Scholar]
  3. Bordenstein S. R., Reznikoff W. S.. ( 2005;). Mobile DNA in obligate intracellular bacteria. Nat Rev Microbiol3:688–699 [CrossRef][PubMed]
    [Google Scholar]
  4. Brodersen D. E., Clemons W. M. Jr, Carter A. P., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V.. ( 2000;). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell103:1143–1154 [CrossRef][PubMed]
    [Google Scholar]
  5. Brook I.. ( 1989;). Inoculum effect. Rev Infect Dis11:361–368 [CrossRef][PubMed]
    [Google Scholar]
  6. Carver T. J., Rutherford K. M., Berriman M., Rajandream M. A., Barrell B. G., Parkhill J.. ( 2005;). ACT: the Artemis Comparison Tool. Bioinformatics21:3422–3423 [CrossRef][PubMed]
    [Google Scholar]
  7. Cromwell G. L.. ( 2002;). Why and how antibiotics are used in swine production. Anim Biotechnol13:7–27 [CrossRef][PubMed]
    [Google Scholar]
  8. Donati M., Di Francesco A., D’Antuono A., Delucca F., Shurdhi A., Moroni A., Baldelli R., Cevenini R.. ( 2010;). In vitro activities of several antimicrobial agents against recently isolated and genotyped Chlamydia trachomatis urogenital serovars D through K. Antimicrob Agents Chemother54:5379–5380 [CrossRef][PubMed]
    [Google Scholar]
  9. Dugan J., Rockey D. D., Jones L., Andersen A. A.. ( 2004;). Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother48:3989–3995 [CrossRef][PubMed]
    [Google Scholar]
  10. Enne V. I., Bennett P. M.. ( 2010;). Methods to determine antibiotic resistance gene silencing. Methods Mol Biol642:29–44 [CrossRef][PubMed]
    [Google Scholar]
  11. Enne V. I., Delsol A. A., Roe J. M., Bennett P. M.. ( 2006;). Evidence of antibiotic resistance gene silencing in Escherichia coli . Antimicrob Agents Chemother50:3003–3010 [CrossRef][PubMed]
    [Google Scholar]
  12. Finan J. E., Rosato A. E., Dickinson T. M., Ko D., Archer G. L.. ( 2002;). Conversion of oxacillin-resistant staphylococci from heterotypic to homotypic resistance expression. Antimicrob Agents Chemother46:24–30 [CrossRef][PubMed]
    [Google Scholar]
  13. Gerrits M. M., de Zoete M. R., Arents N. L., Kuipers E. J., Kusters J. G.. ( 2002;). 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori . Antimicrob Agents Chemother46:2996–3000 [CrossRef][PubMed]
    [Google Scholar]
  14. Harris S. R., Clarke I. N., Seth-Smith H. M., Solomon A. W., Cutcliffe L. T., Marsh P., Skilton R. J., Holland M. J., Mabey D.. & other authors ( 2012;). Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet44:413–419, S1 [CrossRef][PubMed]
    [Google Scholar]
  15. Jones R. B., Van der Pol B., Martin D. H., Shepard M. K.. ( 1990;). Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis162:1309–1315 [CrossRef][PubMed]
    [Google Scholar]
  16. Kang C. I., Pai H., Kim S. H., Kim H. B., Kim E. C., Oh M. D., Choe K. W.. ( 2004;). Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother54:1130–1133 [CrossRef][PubMed]
    [Google Scholar]
  17. Kenny G. E., Hooton T. M., Roberts M. C., Cartwright F. D., Hoyt J.. ( 1989;). Susceptibilities of genital mycoplasmas to the newer quinolones as determined by the agar dilution method. Antimicrob Agents Chemother33:103–107 [CrossRef][PubMed]
    [Google Scholar]
  18. Kubo A., Stephens R. S.. ( 2000;). Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target. Mol Microbiol38:772–780 [CrossRef][PubMed]
    [Google Scholar]
  19. Kubo A., Stephens R. S.. ( 2001;). Substrate-specific diffusion of select dicarboxylates through Chlamydia trachomatis PorB. Microbiology147:3135–3140[PubMed]
    [Google Scholar]
  20. LaPlante K. L., Rybak M. J.. ( 2004;). Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother48:4665–4672 [CrossRef][PubMed]
    [Google Scholar]
  21. Lefevre J. C., Lepargneur J. P., Guion D., Bei S.. ( 1997;). Tetracycline-resistant Chlamydia trachomatis in Toulouse, France. Pathol Biol (Paris)45:376–378[PubMed]
    [Google Scholar]
  22. Lenart J., Andersen A. A., Rockey D. D.. ( 2001;). Growth and development of tetracycline-resistant Chlamydia suis . Antimicrob Agents Chemother45:2198–2203 [CrossRef][PubMed]
    [Google Scholar]
  23. Milch R. A., Rall D. P., Tobie J. E.. ( 1958;). Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg Am40-A:897–910[PubMed]
    [Google Scholar]
  24. Misyurina O. Y., Chipitsyna E. V., Finashutina Y. P., Lazarev V. N., Akopian T. A., Savicheva A. M., Govorun V. M.. ( 2004;). Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob Agents Chemother48:1347–1349 [CrossRef][PubMed]
    [Google Scholar]
  25. Pantchev A., Sting R., Bauerfeind R., Tyczka J., Sachse K.. ( 2010;). Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays. Comp Immunol Microbiol Infect Dis33:473–484 [CrossRef][PubMed]
    [Google Scholar]
  26. Roblin P. M., Hammerschlag M. R.. ( 2000;). In vitro activity of GAR-936 against Chlamydia pneumoniae and Chlamydia trachomatis . Int J Antimicrob Agents16:61–63 [CrossRef][PubMed]
    [Google Scholar]
  27. Ross J. I., Eady E. A., Cove J. H., Cunliffe W. J.. ( 1998;). 16S rRNA mutation associated with tetracycline resistance in a Gram-positive bacterium. Antimicrob Agents Chemother42:1702–1705[PubMed]
    [Google Scholar]
  28. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B.. ( 2000;). Artemis: sequence visualization and annotation. Bioinformatics16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  29. Sandoz K. M., Rockey D. D.. ( 2010;). Antibiotic resistance in Chlamydiae. Future Microbiol5:1427–1442 [CrossRef][PubMed]
    [Google Scholar]
  30. Seth-Smith H. M. B., Harris S. R., Persson K., Marsh P., Barron A., Bignell A., Bjartling C., Clark L., Cutcliffe L. T.. & other authors ( 2009;). Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain. BMC Genomics10:239 [CrossRef][PubMed]
    [Google Scholar]
  31. Skilton R. J., Cutcliffe L. T., Pickett M. A., Lambden P. R., Fane B. A., Clarke I. N.. ( 2007;). Intracellular parasitism of chlamydiae: specific infectivity of chlamydiaphage Chp2 in Chlamydophila abortus . J Bacteriol189:4957–4959 [CrossRef][PubMed]
    [Google Scholar]
  32. Skilton R. J., Cutcliffe L. T., Barlow D., Wang Y., Salim O., Lambden P. R., Clarke I. N.. ( 2009;). Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS ONE4:e7723 [CrossRef][PubMed]
    [Google Scholar]
  33. Solomon A. W., Mohammed Z., Massae P. A., Shao J. F., Foster A., Mabey D. C., Peeling R. W.. ( 2005;). Impact of mass distribution of azithromycin on the antibiotic susceptibilities of ocular Chlamydia trachomatis . Antimicrob Agents Chemother49:4804–4806 [CrossRef][PubMed]
    [Google Scholar]
  34. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L.. & other authors ( 1998;). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science282:754–759 [CrossRef][PubMed]
    [Google Scholar]
  35. Suchland R. J., Sandoz K. M., Jeffrey B. M., Stamm W. E., Rockey D. D.. ( 2009;). Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents Chemother53:4604–4611 [CrossRef][PubMed]
    [Google Scholar]
  36. Thomson N. R., Holden M. T. G., Carder C., Lennard N., Lockey S. J., Marsh P., Skipp P., O’Connor C. D., Goodhead I.. & other authors ( 2008;). Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res18:161–171 [CrossRef][PubMed]
    [Google Scholar]
  37. Unemo M., Seth-Smith H. M., Cutcliffe L. T., Skilton R. J., Barlow D., Goulding D., Persson K., Harris S. R., Kelly A.. & other authors ( 2010;). The Swedish new variant of Chlamydia trachomatis: genome sequence, morphology, cell tropism and phenotypic characterization. Microbiology156:1394–1404 [CrossRef][PubMed]
    [Google Scholar]
  38. van Hoek A. H., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J.. ( 2011;). Acquired antibiotic resistance genes: an overview. Front Microbiol2:203[PubMed][CrossRef]
    [Google Scholar]
  39. Vester B., Douthwaite S.. ( 2001;). Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother45:1–12 [CrossRef][PubMed]
    [Google Scholar]
  40. Wang S. A., Papp J. R., Stamm W. E., Peeling R. W., Martin D. H., Holmes K. K.. ( 2005;). Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis191:917–923 [CrossRef][PubMed]
    [Google Scholar]
  41. Wang Y., Kahane S., Cutcliffe L. T., Skilton R. J., Lambden P. R., Clarke I. N.. ( 2011;). Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog7:e1002258 [CrossRef][PubMed]
    [Google Scholar]
  42. Wyrick P. B., Knight S. T.. ( 2004;). Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother54:79–85 [CrossRef][PubMed]
    [Google Scholar]
  43. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065391-0
Loading
/content/journal/micro/10.1099/mic.0.065391-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error