1887

Abstract

Iron is an essential element required for most organisms. The high-affinity iron-uptake systems in the opportunistic pathogen are activated under iron-limited conditions and are also required for virulence. Here one component of high-affinity iron-uptake systems, the multicopper oxidase (MCO) genes, was characterized. We examined the expression of five MCO genes and demonstrated that and were the major MCO genes in response to iron deficiency. Complementation of the Δ mutant showed that could effectively rescue the growth phenotype in iron-limited medium. Deletion of and in decreased cellular iron content and iron acquisition during iron starvation. However, the Δ/Δ and Δ/Δ mutants exhibited no obvious growth defect in solid iron-limited medium while the Δ/Δ mutant showed a slight growth defect in liquid medium. Further analysis shows that other members of the five MCO genes, especially , would compensate for the absence of and . Furthermore, for the first time, we provide evidence that is implicated in hyphal development in an iron-independent manner and is required for virulence in a mouse model of systemic infection. Together, our results not only expand our understanding about the expression of the MCO genes in , but also provide a novel insight into the role of in iron metabolism, hyphal development and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065268-0
2013-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1044.html?itemId=/content/journal/micro/10.1099/mic.0.065268-0&mimeType=html&fmt=ahah

References

  1. Almeida R. S., Brunke S., Albrecht A., Thewes S., Laue M., Edwards J. E., Filler S. G., Hube B.. ( 2008;). The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. . PLoS Pathog 4:, e1000217. [CrossRef][PubMed]
    [Google Scholar]
  2. Almeida R. S., Wilson D., Hube B.. ( 2009;). Candida albicans iron acquisition within the host. . FEMS Yeast Res 9:, 1000–1012. [CrossRef][PubMed]
    [Google Scholar]
  3. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J.. ( 1994;). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. . Cell 76:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  4. Baek Y. U., Li M., Davis D. A.. ( 2008;). Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. . Eukaryot Cell 7:, 1168–1179. [CrossRef][PubMed]
    [Google Scholar]
  5. Braun B. R., Head W. S., Wang M. X., Johnson A. D.. ( 2000;). Identification and characterization of TUP1-regulated genes in Candida albicans. . Genetics 156:, 31–44.[PubMed]
    [Google Scholar]
  6. Bullen J. J., Rogers H. J., Spalding P. B., Ward C. G.. ( 2006;). Natural resistance, iron and infection: a challenge for clinical medicine. . J Med Microbiol 55:, 251–258. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen C., Pande K., French S. D., Tuch B. B., Noble S. M.. ( 2011;). An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. . Cell Host Microbe 10:, 118–135. [CrossRef][PubMed]
    [Google Scholar]
  8. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D.. ( 1994;). Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. . Cell 76:, 393–402. [CrossRef][PubMed]
    [Google Scholar]
  9. Dix D. R., Bridgham J. T., Broderius M. A., Byersdorfer C. A., Eide D. J.. ( 1994;). The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. . J Biol Chem 269:, 26092–26099.[PubMed]
    [Google Scholar]
  10. Drakesmith H., Prentice A.. ( 2008;). Viral infection and iron metabolism. . Nat Rev Microbiol 6:, 541–552. [CrossRef][PubMed]
    [Google Scholar]
  11. Du H., Guan G., Xie J., Sun Y., Tong Y., Zhang L., Huang G.. ( 2012;). Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. . PLoS ONE 7:, e29707. [CrossRef][PubMed]
    [Google Scholar]
  12. Eck R., Hundt S., Härtl A., Roemer E., Künkel W.. ( 1999;). A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. . Microbiology 145:, 2415–2422.[PubMed]
    [Google Scholar]
  13. Fratti R. A., Belanger P. H., Ghannoum M. A., Edwards J. E. Jr, Filler S. G.. ( 1998;). Endothelial cell injury caused by Candida albicans is dependent on iron. . Infect Immun 66:, 191–196.[PubMed]
    [Google Scholar]
  14. Hameed S., Prasad T., Banerjee D., Chandra A., Mukhopadhyay C. K., Goswami S. K., Lattif A. A., Chandra J., Mukherjee P. K.. & other authors ( 2008;). Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. . FEMS Yeast Res 8:, 744–755. [CrossRef][PubMed]
    [Google Scholar]
  15. Hessa T., Sharma A., Mariappan M., Eshleman H. D., Gutierrez E., Hegde R. S.. ( 2011;). Protein targeting and degradation are coupled for elimination of mislocalized proteins. . Nature 475:, 394–397. [CrossRef][PubMed]
    [Google Scholar]
  16. Heymann P., Gerads M., Schaller M., Dromer F., Winkelmann G., Ernst J. F.. ( 2002;). The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. . Infect Immun 70:, 5246–5255. [CrossRef][PubMed]
    [Google Scholar]
  17. Hsu P. C., Yang C. Y., Lan C. Y.. ( 2011;). Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. . Eukaryot Cell 10:, 207–225. [CrossRef][PubMed]
    [Google Scholar]
  18. Kaplan C. D., Kaplan J.. ( 2009;). Iron acquisition and transcriptional regulation. . Chem Rev 109:, 4536–4552. [CrossRef][PubMed]
    [Google Scholar]
  19. Knight S. A., Lesuisse E., Stearman R., Klausner R. D., Dancis A.. ( 2002;). Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. . Microbiology 148:, 29–40.[PubMed]
    [Google Scholar]
  20. Knight S. A., Vilaire G., Lesuisse E., Dancis A.. ( 2005;). Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. . Infect Immun 73:, 5482–5492. [CrossRef][PubMed]
    [Google Scholar]
  21. Kosman D. J.. ( 2003;). Molecular mechanisms of iron uptake in fungi. . Mol Microbiol 47:, 1185–1197. [CrossRef][PubMed]
    [Google Scholar]
  22. Lan C. Y., Rodarte G., Murillo L. A., Jones T., Davis R. W., Dungan J., Newport G., Agabian N.. ( 2004;). Regulatory networks affected by iron availability in Candida albicans. . Mol Microbiol 53:, 1451–1469. [CrossRef][PubMed]
    [Google Scholar]
  23. Liu T. T., Lee R. E., Barker K. S., Lee R. E., Wei L., Homayouni R., Rogers P. D.. ( 2005;). Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. . Antimicrob Agents Chemother 49:, 2226–2236. [CrossRef][PubMed]
    [Google Scholar]
  24. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. . Methods 25:, 402–408. [CrossRef][PubMed]
    [Google Scholar]
  25. Petrovska I., Kumamoto C. A.. ( 2012;). Functional importance of the DNA binding activity of Candida albicans Czf1p. . PLoS ONE 7:, e39624. [CrossRef][PubMed]
    [Google Scholar]
  26. Philpott C. C., Protchenko O.. ( 2008;). Response to iron deprivation in Saccharomyces cerevisiae. . Eukaryot Cell 7:, 20–27. [CrossRef][PubMed]
    [Google Scholar]
  27. Prohaska J. R.. ( 2011;). Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). . Adv Nutr 2:, 89–95. [CrossRef][PubMed]
    [Google Scholar]
  28. Quan E. M., Kamiya Y., Kamiya D., Denic V., Weibezahn J., Kato K., Weissman J. S.. ( 2008;). Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. . Mol Cell 32:, 870–877. [CrossRef][PubMed]
    [Google Scholar]
  29. Ramanan N., Wang Y.. ( 2000;). A high-affinity iron permease essential for Candida albicans virulence. . Science 288:, 1062–1064. [CrossRef][PubMed]
    [Google Scholar]
  30. Ramón A. M., Fonzi W. A.. ( 2003;). Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. . Eukaryot Cell 2:, 718–728. [CrossRef][PubMed]
    [Google Scholar]
  31. Ratledge C., Dover L. G.. ( 2000;). Iron metabolism in pathogenic bacteria. . Annu Rev Microbiol 54:, 881–941. [CrossRef][PubMed]
    [Google Scholar]
  32. Rogers P. D., Barker K. S.. ( 2002;). Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. . Antimicrob Agents Chemother 46:, 3412–3417. [CrossRef][PubMed]
    [Google Scholar]
  33. Schaller M., Schäfer W., Korting H. C., Hube B.. ( 1998;). Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. . Mol Microbiol 29:, 605–615. [CrossRef][PubMed]
    [Google Scholar]
  34. Spizzo T., Byersdorfer C., Duesterhoeft S., Eide D.. ( 1997;). The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport. . Mol Gen Genet 256:, 547–556. [CrossRef][PubMed]
    [Google Scholar]
  35. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A.. ( 1996;). A permease-oxidase complex involved in high-affinity iron uptake in yeast. . Science 271:, 1552–1557. [CrossRef][PubMed]
    [Google Scholar]
  36. Sutak R., Lesuisse E., Tachezy J., Richardson D. R.. ( 2008;). Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. . Trends Microbiol 16:, 261–268. [CrossRef][PubMed]
    [Google Scholar]
  37. Synnott J. M., Guida A., Mulhern-Haughey S., Higgins D. G., Butler G.. ( 2010;). Regulation of the hypoxic response in Candida albicans. . Eukaryot Cell 9:, 1734–1746. [CrossRef][PubMed]
    [Google Scholar]
  38. Tamarit J., Irazusta V., Moreno-Cermeño A., Ros J.. ( 2006;). Colorimetric assay for the quantitation of iron in yeast. . Anal Biochem 351:, 149–151. [CrossRef][PubMed]
    [Google Scholar]
  39. Wang T. P., Quintanar L., Severance S., Solomon E. I., Kosman D. J.. ( 2003;). Targeted suppression of the ferroxidase and iron trafficking activities of the multicopper oxidase Fet3p from Saccharomyces cerevisiae. . J Biol Inorg Chem 8:, 611–620. [CrossRef][PubMed]
    [Google Scholar]
  40. Wilson R. B., Davis D., Mitchell A. P.. ( 1999;). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. . J Bacteriol 181:, 1868–1874.[PubMed]
    [Google Scholar]
  41. Xu N., Cheng X., Yu Q., Zhang B., Ding X., Xing L., Li M.. ( 2012;). Identification and functional characterization of mitochondrial carrier Mrs4 in Candida albicans. . FEMS Yeast Res 12:, 844–858. [CrossRef][PubMed]
    [Google Scholar]
  42. Ziegler L., Terzulli A., Sedlak E., Kosman D. J.. ( 2010;). Core glycan in the yeast multicopper ferroxidase, Fet3p: a case study of N-linked glycosylation, protein maturation, and stability. . Protein Sci 19:, 1739–1750. [CrossRef][PubMed]
    [Google Scholar]
  43. Ziegler L., Terzulli A., Gaur R., McCarthy R., Kosman D. J.. ( 2011;). Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans. . Mol Microbiol 81:, 473–485. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065268-0
Loading
/content/journal/micro/10.1099/mic.0.065268-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error