1887

Abstract

Due to their adjacent location in the genomes of species and their potential for formation of an electron transfer pathway in sulfate-reducing prokaryotes, adenosyl phosphosulfate (APS) reductase (Apr) and quinone-interacting membrane-bound oxidoreductase (Qmo) have been thought to interact together during the reduction of APS. This interaction was recently verified in . Membrane proteins of Hildenborough Δ JW9021, a deletion mutant, were compared to the parent strain using blue-native PAGE to determine whether Qmo formed a complex with Apr or other proteins. In the parent strain of , a unique band was observed that contained all four Qmo subunits, and another band contained three subunits of Qmo, as well as subunits of AprA and AprB. Similar results were observed with bands excised from membrane preparations of strain G20. These results are in support of the formation of a physical complex between the two proteins; a result that was further confirmed by the co-purification of QmoA/B and AprA/B from affinity-tagged Hildenborough strains (AprA, QmoA and QmoB) regardless of which subunit had been tagged. This provides clear evidence for the presence of a Qmo–Apr complex that is at least partially stable in protein extracts of and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063818-0
2013-10-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2162.html?itemId=/content/journal/micro/10.1099/mic.0.063818-0&mimeType=html&fmt=ahah

References

  1. Chhabra S. R., Butland G., Elias D. A., Chandonia J. M., Fok O. Y., Juba T. R., Gorur A., Allen S., Leung C. M..& other authors ( 2011;). Generalized schemes for high-throughput manipulation of the Desulfovibrio vulgaris genome. Appl Environ Microbiol77:7595–7604 [CrossRef][PubMed]
    [Google Scholar]
  2. Freiberg C., Pohlmann J., Nell P. G., Endermann R., Schuhmacher J., Newton B., Otteneder M., Lampe T., Häbich D., Ziegelbauer K..( 2006;). Novel bacterial acetyl coenzyme A carboxylase inhibitors with antibiotic efficacy in vivo. Antimicrob Agents Chemother50:2707–2712 [CrossRef][PubMed]
    [Google Scholar]
  3. Fritz G., Büchert T., Huber H., Stetter K. O., Kroneck P. M..( 2000;). Adenylylsulfate reductases from archaea and bacteria are 1:1 alphabeta-heterodimeric iron-sulfur flavoenzymes–high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett473:63–66 [CrossRef][PubMed]
    [Google Scholar]
  4. Fritz G., Roth A., Schiffer A., Büchert T., Bourenkov G., Bartunik H. D., Huber H., Stetter K. O., Kroneck P. M. H., Ermler U..( 2002;). Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Proc Natl Acad Sci U S A99:1836–1841 [CrossRef][PubMed]
    [Google Scholar]
  5. Groh J. L., Luo Q., Ballard J. D., Krumholz L. R..( 2005;). A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl Environ Microbiol71:7064–7074 [CrossRef][PubMed]
    [Google Scholar]
  6. Hauser L. J., Land M. L., Brown S. D., Larimer F., Keller K. L., Rapp-Giles B. J., Price M. N., Lin M., Bruce D. C..& other authors ( 2011;). Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol193:4268–4269 [CrossRef][PubMed]
    [Google Scholar]
  7. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B..& other authors ( 2004;). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol22:554–559 [CrossRef][PubMed]
    [Google Scholar]
  8. Kremer D. R., Veenhuis M., Fauque G., Peck H. D. Jr, LeGall J., Lampreia J., Moura J. J. G., Hansen T. A..( 1988;). Immunocytochemical localization of Aps reductase and bisulfite reductase in three Desulfovibrio species. Arch Microbiol150:296–301 [CrossRef]
    [Google Scholar]
  9. Lampreia J., Pereira A. S., Moura J. J. G..( 1994;). Adenylylsulfate reductases from sulfate-reducing bacteria. Methods Enzymol243:241–260 [CrossRef]
    [Google Scholar]
  10. Li X. Z., Luo Q. W., Wofford N. Q., Keller K. L., McInerney M. J., Wall J. D., Krumholz L. R..( 2009;). A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20. J Bacteriol191:2675–2682 [CrossRef][PubMed]
    [Google Scholar]
  11. Meyer B., Kuever J..( 2007a;). Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes–origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology153:2026–2044 [CrossRef][PubMed]
    [Google Scholar]
  12. Meyer B., Kuever J..( 2007b;). Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiology153:3478–3498 [CrossRef][PubMed]
    [Google Scholar]
  13. Pereira I. A. C., Haveman S. A., Voordouw G..( 2007;). Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing delta proteobacteria. Sulphate-reducing Bacteria: Environmental and Engineered Systems215–240 Barton L. L., Hamilton W. A.. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  14. Pires R. H., Lourenço A. I., Morais F., Teixeira M., Xavier A. V., Saraiva L. M., Pereira I. A. C..( 2003;). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta1605:67–82 [CrossRef][PubMed]
    [Google Scholar]
  15. Ramos A. R., Keller K. L., Wall J. D., Pereira I. A..( 2012;). The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5′-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol3:137 [CrossRef][PubMed]
    [Google Scholar]
  16. Wittig I., Braun H. P., Schägger H..( 2006;). Blue native PAGE. Nat Protoc1:418–428 [CrossRef][PubMed]
    [Google Scholar]
  17. Zane G. M., Yen H. C., Wall J. D..( 2010;). Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol76:5500–5509 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063818-0
Loading
/content/journal/micro/10.1099/mic.0.063818-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error