1887

Abstract

Directed motility, or chemotaxis, is required for to establish infection in the stomach, although the full repertoire of this bacterium’s chemotactic responses is not yet known. Here we report that responds to zinc as an attractant and nickel as a repellent. To reach this conclusion, we employed both a temporal chemotaxis assay based on bacterial reversals and a supplemented soft agar spatial assay. We refined the temporal assay using a previously described chemorepellent, acid, and found that requires rich media with serum to maintain optimal swimming motility. Surprisingly, we found that some strains respond to acid as an attractant, and that the TlpC chemoreceptor correlated with whether acid was sensed as an attractant or repellent. Using this same assay, we detected weak repellent responses to nickel and copper, and a varied response to zinc. We thus developed an alternative spatial chemotactic assay called the supplemented soft agar assay, which utilizes soft agar medium supplemented with the test compound. With , the attractant serine slowed overall bacterial migration, while the repellent nickel increased the speed of overall migration. In we detected slowed migration with doubled tryptone media, as well as zinc, consistent with an attractant response. In contrast, nickel increased migration, consistent with repulsion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062877-0
2013-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/46.html?itemId=/content/journal/micro/10.1099/mic.0.062877-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C.. & other authors ( 1999;). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. . Nature 397:, 176–180. [CrossRef][PubMed]
    [Google Scholar]
  2. Andermann T. M., Chen Y.-T., Ottemann K. M.. ( 2002;). Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. . Infect Immun 70:, 5877–5881. [CrossRef][PubMed]
    [Google Scholar]
  3. Bahari H. M., Ross I. N., Turnberg L. A.. ( 1982;). Demonstration of a pH gradient across the mucus layer on the surface of human gastric mucosa in vitro. . Gut 23:, 513–516. [CrossRef][PubMed]
    [Google Scholar]
  4. Baraquet C., Théraulaz L., Iobbi-Nivol C., Méjean V., Jourlin-Castelli C.. ( 2009;). Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis. . Mol Microbiol 73:, 278–290. [CrossRef][PubMed]
    [Google Scholar]
  5. Baumgartner H. K., Montrose M. H.. ( 2004;). Regulated alkali secretion acts in tandem with unstirred layers to regulate mouse gastric surface pH. . Gastroenterology 126:, 774–783. [CrossRef][PubMed]
    [Google Scholar]
  6. Beier D., Spohn G., Rappuoli R., Scarlato V.. ( 1997;). Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. . J Bacteriol 179:, 4676–4683.[PubMed]
    [Google Scholar]
  7. Bencharit S., Ward M. J.. ( 2005;). Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. . J Bacteriol 187:, 5049–5053. [CrossRef][PubMed]
    [Google Scholar]
  8. Berg H. C., Brown D. A.. ( 1972;). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. . Nature 239:, 500–504. [CrossRef][PubMed]
    [Google Scholar]
  9. Castillo A. R., Woodruff A. J., Connolly L. E., Sause W. E., Ottemann K. M.. ( 2008;). Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization. . Infect Immun 76:, 5632–5644. [CrossRef][PubMed]
    [Google Scholar]
  10. Censini S., Lange C., Xiang Z., Crabtree J. E., Ghiara P., Borodovsky M., Rappuoli R., Covacci A.. ( 1996;). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. . Proc Natl Acad Sci U S A 93:, 14648–14653. [CrossRef][PubMed]
    [Google Scholar]
  11. Cerda O., Rivas A., Toledo H.. ( 2003;). Helicobacter pylori strain ATCC700392 encodes a methyl-accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. . FEMS Microbiol Lett 224:, 175–181. [CrossRef][PubMed]
    [Google Scholar]
  12. Chu S., Tanaka S., Kaunitz J. D., Montrose M. H.. ( 1999;). Dynamic regulation of gastric surface pH by luminal pH. . J Clin Invest 103:, 605–612. [CrossRef][PubMed]
    [Google Scholar]
  13. Croxen M. A., Sisson G., Melano R., Hoffman P. S.. ( 2006;). The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. . J Bacteriol 188:, 2656–2665. [CrossRef][PubMed]
    [Google Scholar]
  14. DeLoney-Marino C. R., Wolfe A. J., Visick K. L.. ( 2003;). Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. . Appl Environ Microbiol 69:, 7527–7530. [CrossRef][PubMed]
    [Google Scholar]
  15. Draper J., Karplus K., Ottemann K. M.. ( 2011;). Identification of a chemoreceptor zinc-binding domain common to cytoplasmic bacterial chemoreceptors. . J Bacteriol 193:, 4338–4345. [CrossRef][PubMed]
    [Google Scholar]
  16. Eaton K. A., Gilbert J. V., Joyce E. A., Wanken A. E., Thevenot T., Baker P., Plaut A., Wright A.. ( 2002;). In vivo complementation of ureB restores the ability of Helicobacter pylori to colonize. . Infect Immun 70:, 771–778. [CrossRef][PubMed]
    [Google Scholar]
  17. Englert D. L., Adase C. A., Jayaraman A., Manson M. D.. ( 2010;). Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic NikA binding protein. . J Bacteriol 192:, 2633–2637. [CrossRef][PubMed]
    [Google Scholar]
  18. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W.. ( 2000;). Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. . Infect Immun 68:, 2016–2023. [CrossRef][PubMed]
    [Google Scholar]
  19. Hazelbauer G. L., Mesibov R. E., Adler J.. ( 1969;). Escherichia coli mutants defective in chemotaxis toward specific chemicals. . Proc Natl Acad Sci U S A 64:, 1300–1307. [CrossRef][PubMed]
    [Google Scholar]
  20. Howitt M. R., Lee J. Y., Lertsethtakarn P., Vogelmann R., Joubert L. M., Ottemann K. M., Amieva M. R.. ( 2011;). ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. . MBio 2:, e00098–e00011. [CrossRef][PubMed]
    [Google Scholar]
  21. Jiménez-Pearson M. A., Delany I., Scarlato V., Beier D.. ( 2005;). Phosphate flow in the chemotactic response system of Helicobacter pylori. . Microbiology 151:, 3299–3311. [CrossRef][PubMed]
    [Google Scholar]
  22. Joyce E. A., Bassler B. L., Wright A.. ( 2000;). Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer. . J Bacteriol 182:, 3638–3643. [CrossRef][PubMed]
    [Google Scholar]
  23. Karim Q. N., Logan R. P., Puels J., Karnholz A., Worku M. L.. ( 1998;). Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. . J Clin Pathol 51:, 623–628. [CrossRef][PubMed]
    [Google Scholar]
  24. Kehl-Fie T. E., Skaar E. P.. ( 2010;). Nutritional immunity beyond iron: a role for manganese and zinc. . Curr Opin Chem Biol 14:, 218–224. [CrossRef][PubMed]
    [Google Scholar]
  25. Lauga E., DiLuzio W. R., Whitesides G. M., Stone H. A.. ( 2006;). Swimming in circles: motion of bacteria near solid boundaries. . Biophys J 90:, 400–412. [CrossRef][PubMed]
    [Google Scholar]
  26. Lee A., O’Rourke J., De Ungria M. C., Robertson B., Daskalopoulos G., Dixon M. F.. ( 1997;). A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. . Gastroenterology 112:, 1386–1397. [CrossRef][PubMed]
    [Google Scholar]
  27. Lertsethtakarn P., Ottemann K. M.. ( 2010;). A remote CheZ orthologue retains phosphatase function. . Mol Microbiol 77:, 225–235. [CrossRef][PubMed]
    [Google Scholar]
  28. Lertsethtakarn P., Ottemann K. M., Hendrixson D. R.. ( 2011;). Motility and chemotaxis in Campylobacter and Helicobacter. . Annu Rev Microbiol 65:, 389–410. [CrossRef][PubMed]
    [Google Scholar]
  29. Lowenthal A. C., Simon C., Fair A. S., Mehmood K., Terry K., Anastasia S., Ottemann K. M.. ( 2009;). A fixed-time diffusion analysis method determines that the three cheV genes of Helicobacter pylori differentially affect motility. . Microbiology 155:, 1181–1191. [CrossRef][PubMed]
    [Google Scholar]
  30. Maier R. J., Benoit S. L., Seshadri S.. ( 2007;). Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. . Biometals 20:, 655–664. [CrossRef][PubMed]
    [Google Scholar]
  31. McGee D. J., Langford M. L., Watson E. L., Carter J. E., Chen Y.-T., Ottemann K. M.. ( 2005;). Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. . Infect Immun 73:, 1820–1827. [CrossRef][PubMed]
    [Google Scholar]
  32. Merrell D. S., Goodrich M. L., Otto G., Tompkins L. S., Falkow S.. ( 2003;). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. . Infect Immun 71:, 3529–3539. [CrossRef][PubMed]
    [Google Scholar]
  33. Miller L. D., Russell M. H., Alexandre G.. ( 2009;). Diversity in bacterial chemotactic responses and niche adaptation. . Adv Appl Microbiol 66:, 53–75. [CrossRef][PubMed]
    [Google Scholar]
  34. Minamino T., Imada K., Namba K.. ( 2008;). Molecular motors of the bacterial flagella. . Curr Opin Struct Biol 18:, 693–701. [CrossRef][PubMed]
    [Google Scholar]
  35. Mizote T., Yoshiyama H., Nakazawa T.. ( 1997;). Urease-independent chemotactic responses of Helicobacter pylori to urea, urease inhibitors, and sodium bicarbonate. . Infect Immun 65:, 1519–1521.[PubMed]
    [Google Scholar]
  36. Parkinson J. S.. ( 1978;). Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. . J Bacteriol 135:, 45–53.[PubMed]
    [Google Scholar]
  37. Parsonnet J., Friedman G. D., Vandersteen D. P., Chang Y., Vogelman J. H., Orentreich N., Sibley R. K.. ( 1991;). Helicobacter pylori infection and the risk of gastric carcinoma. . N Engl J Med 325:, 1127–1131. [CrossRef][PubMed]
    [Google Scholar]
  38. Rader B. A., Wreden C., Hicks K. G., Sweeney E. G., Ottemann K. M., Guillemin K.. ( 2011;). Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. . Microbiology 157:, 2445–2455. [CrossRef][PubMed]
    [Google Scholar]
  39. Ross I. N., Bahari H. M., Turnberg L. A.. ( 1982;). Studies of the pH gradient across the mucus on rat gastric mucosa in vivo and across mucus on human gastric mucosa in vitro. . Adv Exp Med Biol 144:, 189–191. [CrossRef][PubMed]
    [Google Scholar]
  40. Schreiber S., Scheid P.. ( 1997;). Gastric mucus of the guinea pig: proton carrier and diffusion barrier. . Am J Physiol 272:, G63–G70.[PubMed]
    [Google Scholar]
  41. Schreiber S., Konradt M., Groll C., Scheid P., Hanauer G., Werling H. O., Josenhans C., Suerbaum S.. ( 2004;). The spatial orientation of Helicobacter pylori in the gastric mucus. . Proc Natl Acad Sci U S A 101:, 5024–5029. [CrossRef][PubMed]
    [Google Scholar]
  42. Schweinitzer T., Mizote T., Ishikawa N., Dudnik A., Inatsu S., Schreiber S., Suerbaum S., Aizawa S. I., Josenhans C.. ( 2008;). Functional characterization and mutagenesis of the proposed behavioral sensor TlpD of Helicobacter pylori. . J Bacteriol 190:, 3244–3255. [CrossRef][PubMed]
    [Google Scholar]
  43. Sempértegui F., Díaz M., Mejía R., Rodríguez-Mora O. G., Rentería E., Guarderas C., Estrella B., Recalde R., Hamer D. H., Reeves P. G.. ( 2007;). Low concentrations of zinc in gastric mucosa are associated with increased severity of Helicobacter pylori-induced inflammation. . Helicobacter 12:, 43–48. [CrossRef][PubMed]
    [Google Scholar]
  44. Seshadri S., Benoit S. L., Maier R. J.. ( 2007;). Roles of His-rich Hpn and Hpn-like proteins in Helicobacter pylori nickel physiology. . J Bacteriol 189:, 4120–4126. [CrossRef][PubMed]
    [Google Scholar]
  45. Seymour F. W. K., Doetsch R. N.. ( 1973;). Chemotactic responses by motile bacteria. . J Gen Microbiol 78:, 287–296. [CrossRef][PubMed]
    [Google Scholar]
  46. Sidebotham R. L., Worku M. L., Karim Q. N., Dhir N. K., Baron J. H.. ( 2003;). How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies. . Eur J Gastroenterol Hepatol 15:, 395–401. [CrossRef][PubMed]
    [Google Scholar]
  47. Smith J. L., Doetsch R. N.. ( 1969;). Studies on negative chemotaxis and the survival value of motility in Pseudomonas fluorescens. . J Gen Microbiol 55:, 379–391. [CrossRef][PubMed]
    [Google Scholar]
  48. Stähler F. N., Odenbreit S., Haas R., Wilrich J., Van Vliet A. H., Kusters J. G., Kist M., Bereswill S.. ( 2006;). The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. . Infect Immun 74:, 3845–3852. [CrossRef][PubMed]
    [Google Scholar]
  49. Surette M. G., Stock J. B.. ( 1996;). Role of α-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. . J Biol Chem 271:, 17966–17973. [CrossRef][PubMed]
    [Google Scholar]
  50. Terry K., Williams S. M., Connolly L., Ottemann K. M.. ( 2005;). Chemotaxis plays multiple roles during Helicobacter pylori animal infection. . Infect Immun 73:, 803–811. [CrossRef][PubMed]
    [Google Scholar]
  51. Terry K., Go A. C., Ottemann K. M.. ( 2006;). Proteomic mapping of a suppressor of non-chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein. . Mol Microbiol 61:, 871–882. [CrossRef][PubMed]
    [Google Scholar]
  52. Testerman T. L., McGee D. J., Mobley H. L.. ( 2001;). Helicobacter pylori growth and urease detection in the chemically defined medium Ham’s F-12 nutrient mixture. . J Clin Microbiol 39:, 3842–3850. [CrossRef][PubMed]
    [Google Scholar]
  53. Testerman T. L., Conn P. B., Mobley H. L., McGee D. J.. ( 2006;). Nutritional requirements and antibiotic resistance patterns of Helicobacter species in chemically defined media. . J Clin Microbiol 44:, 1650–1658. [CrossRef][PubMed]
    [Google Scholar]
  54. Tomb J.-F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S.. & other authors ( 1997;). The complete genome sequence of the gastric pathogen Helicobacter pylori. . Nature 388:, 539–547. [CrossRef][PubMed]
    [Google Scholar]
  55. Tso W. W., Adler J.. ( 1974;). Negative chemotaxis in Escherichia coli. . J Bacteriol 118:, 560–576.[PubMed]
    [Google Scholar]
  56. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J.. ( 2001;). Helicobacter pylori infection and the development of gastric cancer. . N Engl J Med 345:, 784–789. [CrossRef][PubMed]
    [Google Scholar]
  57. Vigeant M. A., Ford R. M.. ( 1997;). Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. . Appl Environ Microbiol 63:, 3474–3479.[PubMed]
    [Google Scholar]
  58. Wadhams G. H., Armitage J. P.. ( 2004;). Making sense of it all: bacterial chemotaxis. . Nat Rev Mol Cell Biol 5:, 1024–1037. [CrossRef][PubMed]
    [Google Scholar]
  59. Weis R. M., Koshland D. E. Jr. ( 1990;). Chemotaxis in Escherichia coli proceeds efficiently from different initial tumble frequencies. . J Bacteriol 172:, 1099–1105.[PubMed]
    [Google Scholar]
  60. Whitmire J. M., Gancz H., Merrell D. S.. ( 2007;). Balancing the double-edged sword: metal ion homeostasis and the ulcer bug. . Curr Med Chem 14:, 469–478. [CrossRef][PubMed]
    [Google Scholar]
  61. Williams S. E., Turnberg L. A.. ( 1982;). Studies of the protective properties of gastric mucus. . Adv Exp Med Biol 144:, 187–188. [CrossRef][PubMed]
    [Google Scholar]
  62. Williams S. M., Chen Y. T., Andermann T. M., Carter J. E., McGee D. J., Ottemann K. M.. ( 2007;). Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. . Infect Immun 75:, 3747–3757. [CrossRef][PubMed]
    [Google Scholar]
  63. Wolfe A. J., Berg H. C.. ( 1989;). Migration of bacteria in semisolid agar. . Proc Natl Acad Sci U S A 86:, 6973–6977. [CrossRef][PubMed]
    [Google Scholar]
  64. Worku M. L., Karim Q. N., Spencer J., Sidebotham R. L.. ( 2004;). Chemotactic response of Helicobacter pylori to human plasma and bile. . J Med Microbiol 53:, 807–811. [CrossRef][PubMed]
    [Google Scholar]
  65. Wunder C., Churin Y., Winau F., Warnecke D., Vieth M., Lindner B., Zähringer U., Mollenkopf H. J., Heinz E., Meyer T. F.. ( 2006;). Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. . Nat Med 12:, 1030–1038. [CrossRef][PubMed]
    [Google Scholar]
  66. Yamada T., Searle J. G., Ahnen D., Aipers D. H., Greenberg H. B., Gray M., Joscelyn K. B., Kauffman G., Podolsky D. K.. ( 1994;). NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in peptic ulcer. . JAMA 272:, 65–69. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062877-0
Loading
/content/journal/micro/10.1099/mic.0.062877-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error