1887

Abstract

Directed motility, or chemotaxis, is required for to establish infection in the stomach, although the full repertoire of this bacterium’s chemotactic responses is not yet known. Here we report that responds to zinc as an attractant and nickel as a repellent. To reach this conclusion, we employed both a temporal chemotaxis assay based on bacterial reversals and a supplemented soft agar spatial assay. We refined the temporal assay using a previously described chemorepellent, acid, and found that requires rich media with serum to maintain optimal swimming motility. Surprisingly, we found that some strains respond to acid as an attractant, and that the TlpC chemoreceptor correlated with whether acid was sensed as an attractant or repellent. Using this same assay, we detected weak repellent responses to nickel and copper, and a varied response to zinc. We thus developed an alternative spatial chemotactic assay called the supplemented soft agar assay, which utilizes soft agar medium supplemented with the test compound. With , the attractant serine slowed overall bacterial migration, while the repellent nickel increased the speed of overall migration. In we detected slowed migration with doubled tryptone media, as well as zinc, consistent with an attractant response. In contrast, nickel increased migration, consistent with repulsion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062877-0
2013-01-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/46.html?itemId=/content/journal/micro/10.1099/mic.0.062877-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C..& other authors ( 1999;). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature397:176–180 [CrossRef][PubMed]
    [Google Scholar]
  2. Andermann T. M., Chen Y.-T., Ottemann K. M..( 2002;). Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. Infect Immun70:5877–5881 [CrossRef][PubMed]
    [Google Scholar]
  3. Bahari H. M., Ross I. N., Turnberg L. A..( 1982;). Demonstration of a pH gradient across the mucus layer on the surface of human gastric mucosa in vitro. Gut23:513–516 [CrossRef][PubMed]
    [Google Scholar]
  4. Baraquet C., Théraulaz L., Iobbi-Nivol C., Méjean V., Jourlin-Castelli C..( 2009;). Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis. Mol Microbiol73:278–290 [CrossRef][PubMed]
    [Google Scholar]
  5. Baumgartner H. K., Montrose M. H..( 2004;). Regulated alkali secretion acts in tandem with unstirred layers to regulate mouse gastric surface pH. Gastroenterology126:774–783 [CrossRef][PubMed]
    [Google Scholar]
  6. Beier D., Spohn G., Rappuoli R., Scarlato V..( 1997;). Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J Bacteriol179:4676–4683[PubMed]
    [Google Scholar]
  7. Bencharit S., Ward M. J..( 2005;). Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. J Bacteriol187:5049–5053 [CrossRef][PubMed]
    [Google Scholar]
  8. Berg H. C., Brown D. A..( 1972;). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature239:500–504 [CrossRef][PubMed]
    [Google Scholar]
  9. Castillo A. R., Woodruff A. J., Connolly L. E., Sause W. E., Ottemann K. M..( 2008;). Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization. Infect Immun76:5632–5644 [CrossRef][PubMed]
    [Google Scholar]
  10. Censini S., Lange C., Xiang Z., Crabtree J. E., Ghiara P., Borodovsky M., Rappuoli R., Covacci A..( 1996;). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A93:14648–14653 [CrossRef][PubMed]
    [Google Scholar]
  11. Cerda O., Rivas A., Toledo H..( 2003;). Helicobacter pylori strain ATCC700392 encodes a methyl-accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. FEMS Microbiol Lett224:175–181 [CrossRef][PubMed]
    [Google Scholar]
  12. Chu S., Tanaka S., Kaunitz J. D., Montrose M. H..( 1999;). Dynamic regulation of gastric surface pH by luminal pH. J Clin Invest103:605–612 [CrossRef][PubMed]
    [Google Scholar]
  13. Croxen M. A., Sisson G., Melano R., Hoffman P. S..( 2006;). The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol188:2656–2665 [CrossRef][PubMed]
    [Google Scholar]
  14. DeLoney-Marino C. R., Wolfe A. J., Visick K. L..( 2003;). Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl Environ Microbiol69:7527–7530 [CrossRef][PubMed]
    [Google Scholar]
  15. Draper J., Karplus K., Ottemann K. M..( 2011;). Identification of a chemoreceptor zinc-binding domain common to cytoplasmic bacterial chemoreceptors. J Bacteriol193:4338–4345 [CrossRef][PubMed]
    [Google Scholar]
  16. Eaton K. A., Gilbert J. V., Joyce E. A., Wanken A. E., Thevenot T., Baker P., Plaut A., Wright A..( 2002;). In vivo complementation of ureB restores the ability of Helicobacter pylori to colonize. Infect Immun70:771–778 [CrossRef][PubMed]
    [Google Scholar]
  17. Englert D. L., Adase C. A., Jayaraman A., Manson M. D..( 2010;). Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic NikA binding protein. J Bacteriol192:2633–2637 [CrossRef][PubMed]
    [Google Scholar]
  18. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W..( 2000;). Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun68:2016–2023 [CrossRef][PubMed]
    [Google Scholar]
  19. Hazelbauer G. L., Mesibov R. E., Adler J..( 1969;). Escherichia coli mutants defective in chemotaxis toward specific chemicals. Proc Natl Acad Sci U S A64:1300–1307 [CrossRef][PubMed]
    [Google Scholar]
  20. Howitt M. R., Lee J. Y., Lertsethtakarn P., Vogelmann R., Joubert L. M., Ottemann K. M., Amieva M. R..( 2011;). ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. MBio2:e00098–e00011 [CrossRef][PubMed]
    [Google Scholar]
  21. Jiménez-Pearson M. A., Delany I., Scarlato V., Beier D..( 2005;). Phosphate flow in the chemotactic response system of Helicobacter pylori. Microbiology151:3299–3311 [CrossRef][PubMed]
    [Google Scholar]
  22. Joyce E. A., Bassler B. L., Wright A..( 2000;). Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer. J Bacteriol182:3638–3643 [CrossRef][PubMed]
    [Google Scholar]
  23. Karim Q. N., Logan R. P., Puels J., Karnholz A., Worku M. L..( 1998;). Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. J Clin Pathol51:623–628 [CrossRef][PubMed]
    [Google Scholar]
  24. Kehl-Fie T. E., Skaar E. P..( 2010;). Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol14:218–224 [CrossRef][PubMed]
    [Google Scholar]
  25. Lauga E., DiLuzio W. R., Whitesides G. M., Stone H. A..( 2006;). Swimming in circles: motion of bacteria near solid boundaries. Biophys J90:400–412 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee A., O’Rourke J., De Ungria M. C., Robertson B., Daskalopoulos G., Dixon M. F..( 1997;). A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology112:1386–1397 [CrossRef][PubMed]
    [Google Scholar]
  27. Lertsethtakarn P., Ottemann K. M..( 2010;). A remote CheZ orthologue retains phosphatase function. Mol Microbiol77:225–235 [CrossRef][PubMed]
    [Google Scholar]
  28. Lertsethtakarn P., Ottemann K. M., Hendrixson D. R..( 2011;). Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol65:389–410 [CrossRef][PubMed]
    [Google Scholar]
  29. Lowenthal A. C., Simon C., Fair A. S., Mehmood K., Terry K., Anastasia S., Ottemann K. M..( 2009;). A fixed-time diffusion analysis method determines that the three cheV genes of Helicobacter pylori differentially affect motility. Microbiology155:1181–1191 [CrossRef][PubMed]
    [Google Scholar]
  30. Maier R. J., Benoit S. L., Seshadri S..( 2007;). Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals20:655–664 [CrossRef][PubMed]
    [Google Scholar]
  31. McGee D. J., Langford M. L., Watson E. L., Carter J. E., Chen Y.-T., Ottemann K. M..( 2005;). Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect Immun73:1820–1827 [CrossRef][PubMed]
    [Google Scholar]
  32. Merrell D. S., Goodrich M. L., Otto G., Tompkins L. S., Falkow S..( 2003;). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun71:3529–3539 [CrossRef][PubMed]
    [Google Scholar]
  33. Miller L. D., Russell M. H., Alexandre G..( 2009;). Diversity in bacterial chemotactic responses and niche adaptation. Adv Appl Microbiol66:53–75 [CrossRef][PubMed]
    [Google Scholar]
  34. Minamino T., Imada K., Namba K..( 2008;). Molecular motors of the bacterial flagella. Curr Opin Struct Biol18:693–701 [CrossRef][PubMed]
    [Google Scholar]
  35. Mizote T., Yoshiyama H., Nakazawa T..( 1997;). Urease-independent chemotactic responses of Helicobacter pylori to urea, urease inhibitors, and sodium bicarbonate. Infect Immun65:1519–1521[PubMed]
    [Google Scholar]
  36. Parkinson J. S..( 1978;). Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J Bacteriol135:45–53[PubMed]
    [Google Scholar]
  37. Parsonnet J., Friedman G. D., Vandersteen D. P., Chang Y., Vogelman J. H., Orentreich N., Sibley R. K..( 1991;). Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med325:1127–1131 [CrossRef][PubMed]
    [Google Scholar]
  38. Rader B. A., Wreden C., Hicks K. G., Sweeney E. G., Ottemann K. M., Guillemin K..( 2011;). Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology157:2445–2455 [CrossRef][PubMed]
    [Google Scholar]
  39. Ross I. N., Bahari H. M., Turnberg L. A..( 1982;). Studies of the pH gradient across the mucus on rat gastric mucosa in vivo and across mucus on human gastric mucosa in vitro. Adv Exp Med Biol144:189–191 [CrossRef][PubMed]
    [Google Scholar]
  40. Schreiber S., Scheid P..( 1997;). Gastric mucus of the guinea pig: proton carrier and diffusion barrier. Am J Physiol272:G63–G70[PubMed]
    [Google Scholar]
  41. Schreiber S., Konradt M., Groll C., Scheid P., Hanauer G., Werling H. O., Josenhans C., Suerbaum S..( 2004;). The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A101:5024–5029 [CrossRef][PubMed]
    [Google Scholar]
  42. Schweinitzer T., Mizote T., Ishikawa N., Dudnik A., Inatsu S., Schreiber S., Suerbaum S., Aizawa S. I., Josenhans C..( 2008;). Functional characterization and mutagenesis of the proposed behavioral sensor TlpD of Helicobacter pylori. J Bacteriol190:3244–3255 [CrossRef][PubMed]
    [Google Scholar]
  43. Sempértegui F., Díaz M., Mejía R., Rodríguez-Mora O. G., Rentería E., Guarderas C., Estrella B., Recalde R., Hamer D. H., Reeves P. G..( 2007;). Low concentrations of zinc in gastric mucosa are associated with increased severity of Helicobacter pylori-induced inflammation. Helicobacter12:43–48 [CrossRef][PubMed]
    [Google Scholar]
  44. Seshadri S., Benoit S. L., Maier R. J..( 2007;). Roles of His-rich Hpn and Hpn-like proteins in Helicobacter pylori nickel physiology. J Bacteriol189:4120–4126 [CrossRef][PubMed]
    [Google Scholar]
  45. Seymour F. W. K., Doetsch R. N..( 1973;). Chemotactic responses by motile bacteria. J Gen Microbiol78:287–296 [CrossRef][PubMed]
    [Google Scholar]
  46. Sidebotham R. L., Worku M. L., Karim Q. N., Dhir N. K., Baron J. H..( 2003;). How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment: evidence from in-vitro studies. Eur J Gastroenterol Hepatol15:395–401 [CrossRef][PubMed]
    [Google Scholar]
  47. Smith J. L., Doetsch R. N..( 1969;). Studies on negative chemotaxis and the survival value of motility in Pseudomonas fluorescens. J Gen Microbiol55:379–391 [CrossRef][PubMed]
    [Google Scholar]
  48. Stähler F. N., Odenbreit S., Haas R., Wilrich J., Van Vliet A. H., Kusters J. G., Kist M., Bereswill S..( 2006;). The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun74:3845–3852 [CrossRef][PubMed]
    [Google Scholar]
  49. Surette M. G., Stock J. B..( 1996;). Role of α-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J Biol Chem271:17966–17973 [CrossRef][PubMed]
    [Google Scholar]
  50. Terry K., Williams S. M., Connolly L., Ottemann K. M..( 2005;). Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect Immun73:803–811 [CrossRef][PubMed]
    [Google Scholar]
  51. Terry K., Go A. C., Ottemann K. M..( 2006;). Proteomic mapping of a suppressor of non-chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein. Mol Microbiol61:871–882 [CrossRef][PubMed]
    [Google Scholar]
  52. Testerman T. L., McGee D. J., Mobley H. L..( 2001;). Helicobacter pylori growth and urease detection in the chemically defined medium Ham’s F-12 nutrient mixture. J Clin Microbiol39:3842–3850 [CrossRef][PubMed]
    [Google Scholar]
  53. Testerman T. L., Conn P. B., Mobley H. L., McGee D. J..( 2006;). Nutritional requirements and antibiotic resistance patterns of Helicobacter species in chemically defined media. J Clin Microbiol44:1650–1658 [CrossRef][PubMed]
    [Google Scholar]
  54. Tomb J.-F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S..& other authors ( 1997;). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388:539–547 [CrossRef][PubMed]
    [Google Scholar]
  55. Tso W. W., Adler J..( 1974;). Negative chemotaxis in Escherichia coli. J Bacteriol118:560–576[PubMed]
    [Google Scholar]
  56. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J..( 2001;). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med345:784–789 [CrossRef][PubMed]
    [Google Scholar]
  57. Vigeant M. A., Ford R. M..( 1997;). Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl Environ Microbiol63:3474–3479[PubMed]
    [Google Scholar]
  58. Wadhams G. H., Armitage J. P..( 2004;). Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol5:1024–1037 [CrossRef][PubMed]
    [Google Scholar]
  59. Weis R. M., Koshland D. E. Jr.( 1990;). Chemotaxis in Escherichia coli proceeds efficiently from different initial tumble frequencies. J Bacteriol172:1099–1105[PubMed]
    [Google Scholar]
  60. Whitmire J. M., Gancz H., Merrell D. S..( 2007;). Balancing the double-edged sword: metal ion homeostasis and the ulcer bug. Curr Med Chem14:469–478 [CrossRef][PubMed]
    [Google Scholar]
  61. Williams S. E., Turnberg L. A..( 1982;). Studies of the protective properties of gastric mucus. Adv Exp Med Biol144:187–188 [CrossRef][PubMed]
    [Google Scholar]
  62. Williams S. M., Chen Y. T., Andermann T. M., Carter J. E., McGee D. J., Ottemann K. M..( 2007;). Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun75:3747–3757 [CrossRef][PubMed]
    [Google Scholar]
  63. Wolfe A. J., Berg H. C..( 1989;). Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A86:6973–6977 [CrossRef][PubMed]
    [Google Scholar]
  64. Worku M. L., Karim Q. N., Spencer J., Sidebotham R. L..( 2004;). Chemotactic response of Helicobacter pylori to human plasma and bile. J Med Microbiol53:807–811 [CrossRef][PubMed]
    [Google Scholar]
  65. Wunder C., Churin Y., Winau F., Warnecke D., Vieth M., Lindner B., Zähringer U., Mollenkopf H. J., Heinz E., Meyer T. F..( 2006;). Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med12:1030–1038 [CrossRef][PubMed]
    [Google Scholar]
  66. Yamada T., Searle J. G., Ahnen D., Aipers D. H., Greenberg H. B., Gray M., Joscelyn K. B., Kauffman G., Podolsky D. K..( 1994;). NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in peptic ulcer. JAMA272:65–69 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062877-0
Loading
/content/journal/micro/10.1099/mic.0.062877-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error