1887

Abstract

Autophagy is a highly conserved process, representing the major eukaryotic degradative pathway of cellular components. Autophagy-mediated recycling of cellular materials contributes to cell differentiation, tissue remodelling and proper development. In fungi, autophagy is required for normal growth and cell differentiation. The entomopathogenic fungus and its invertebrate targets represent a unique model system with which to examine host–pathogen interactions. The gene is one of 17 involved in autophagosome formation, and the homologue () was identified. The role of autophagy in growth and virulence was investigated via construction of a targeted gene knockout of . The mutant strain displayed increased sensitivity to nutrient limitation, with decreased germination and growth as compared with the wild-type parent. Conidiation was severely compromised and conidia derived from the Δ strain were altered in morphology. Cell differentiation into blastospores was also greatly reduced. Despite the significant growth and developmental defects, insect bioassays using the oriental leafworm moth, , indicated a modest (~40 %) decrease in virulence in the Δ strain. The phenotypic defects of the Δ strain could be restored by introduction of an intact copy of . These data suggest that unlike several plant and animal pathogenic fungi, where is required for infection, in it is dispensable for pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062646-0
2013-02-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/243.html?itemId=/content/journal/micro/10.1099/mic.0.062646-0&mimeType=html&fmt=ahah

References

  1. Bartoszewska M., Kiel J. A., Bovenberg R. A., Veenhuis M., van der Klei I. J.. ( 2011;). Autophagy deficiency promotes β-lactam production in Penicillium chrysogenum . Appl Environ Microbiol77:1413–1422[PubMed][CrossRef]
    [Google Scholar]
  2. Behie S. W., Zelisko P. M., Bidochka M. J.. ( 2012;). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science336:1576–1577[PubMed][CrossRef]
    [Google Scholar]
  3. Cho E.-M., Liu L., Farmerie W., Keyhani N. O.. ( 2006;). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology152:2843–2854 [CrossRef][PubMed]
    [Google Scholar]
  4. Dong B., Liu X. H., Lu J. P., Zhang F. S., Gao H. M., Wang H. K., Lin F. C.. ( 2009;). MgAtg9 trafficking in Magnaporthe oryzae . Autophagy5:946–954 [CrossRef][PubMed]
    [Google Scholar]
  5. Fan Y., Borovsky D., Hawkings C., Ortiz-Urquiza A., Keyhani N. O.. ( 2012;). Exploiting host molecules to augment mycoinsecticide virulence. Nat Biotechnol30:35–37 [CrossRef][PubMed]
    [Google Scholar]
  6. Fang W. G., Feng J., Fan Y. H., Zhang Y. J., Bidochka M. J., Leger R. J., Pei Y.. ( 2009;). Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana . J Invertebr Pathol102:155–159[PubMed][CrossRef]
    [Google Scholar]
  7. Fang W. G., Vega-Rodríguez J., Ghosh A. K., Jacobs-Lorena M., Kang A., St Leger R. J.. ( 2011;). Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science331:1074–1077 [CrossRef][PubMed]
    [Google Scholar]
  8. Feng M. G., Poprawski T. J., Khachatourians G. G.. ( 1994;). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Technol4:3–34 [CrossRef]
    [Google Scholar]
  9. Gurulingappa P., Sword G. A., Murdoch G., McGee P. A.. ( 2010;). Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control55:34–41 [CrossRef]
    [Google Scholar]
  10. Hanada T., Noda N. N., Satomi Y., Ichimura Y., Fujioka Y., Takao T., Inagaki F., Ohsumi Y.. ( 2007;). The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem282:37298–37302[PubMed][CrossRef]
    [Google Scholar]
  11. Holder D. J., Keyhani N. O.. ( 2005;). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol71:5260–5266 [CrossRef][PubMed]
    [Google Scholar]
  12. Kikuma T., Kitamoto K.. ( 2011;). Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes. FEMS Microbiol Lett316:61–69 [CrossRef][PubMed]
    [Google Scholar]
  13. Kirkland B. H., Westwood G. S., Keyhani N. O.. ( 2004;). Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis . J Med Entomol41:705–711 [CrossRef][PubMed]
    [Google Scholar]
  14. Klionsky D. J., Cuervo A. M., Seglen P. O.. ( 2007;). Methods for monitoring autophagy from yeast to human. Autophagy3:181–206[PubMed][CrossRef]
    [Google Scholar]
  15. Kuma A., Mizushima N., Ishihara N., Ohsumi Y.. ( 2002;). Formation of the approximately 350-kDa Apg12–Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem277:18619–18625 [CrossRef][PubMed]
    [Google Scholar]
  16. Levine B., Klionsky D. J.. ( 2004;). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell6:463–477[PubMed][CrossRef]
    [Google Scholar]
  17. Lewis M. W., Robalino I. V., Keyhani N. O.. ( 2009;). Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana . Microbiology155:3110–3120 [CrossRef][PubMed]
    [Google Scholar]
  18. Liu X. H., Lu J. P., Zhang L., Dong B., Min H., Lin F. C.. ( 2007;). Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell6:997–1005[PubMed][CrossRef]
    [Google Scholar]
  19. Liu T. B., Liu X. H., Lu J. P., Zhang L., Min H., Lin F. C.. ( 2010;). The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae . Autophagy6:74–85 [CrossRef][PubMed]
    [Google Scholar]
  20. Liu X. H., Yang J., He R. L., Lu J. P., Zhang C. L., Lu S. L., Lin F. C.. ( 2011;). An autophagy gene, TrATG5, affects conidiospore differentiation in Trichoderma reesei . Res Microbiol162:756–763 [CrossRef][PubMed]
    [Google Scholar]
  21. Lu J. P., Liu X. H., Feng X. X., Min H., Lin F. C.. ( 2009;). An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae . Curr Genet55:461–473 [CrossRef][PubMed]
    [Google Scholar]
  22. Michielse C. B., Hooykaas P. J. J., van den Hondel C. A. M. J. J., Ram A. F. J.. ( 2008;). Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori . Nat Protoc3:1671–1678[PubMed][CrossRef]
    [Google Scholar]
  23. Nadal M., Gold S. E.. ( 2010;). The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis . Mol Plant Pathol11:463–478 [CrossRef][PubMed]
    [Google Scholar]
  24. Niemann A., Baltes J., Elsässer H.-P.. ( 2001;). Fluorescence properties and staining behavior of monodansylpentane, a structural homologue of the lysosomotropic agent monodansylcadaverine. J Histochem Cytochem49:177–185[PubMed][CrossRef]
    [Google Scholar]
  25. Park Y., Kim W., Kim A.-Y., Choi H. J., Choi J. K., Park N. S., Koh E. K., Seo J., Koh Y. H.. ( 2011;). Normal prion protein in Drosophila enhances the toxicity of pathogenic polyglutamine proteins and alters susceptibility to oxidative and autophagy signaling modulators. Biochem Biophys Res Commun404:638–645[PubMed][CrossRef]
    [Google Scholar]
  26. Pinan-Lucarré B., Balguerie A., Clavé C.. ( 2005;). Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell4:1765–1774[PubMed][CrossRef]
    [Google Scholar]
  27. Pollack J. K., Harris S. D., Marten M. R.. ( 2009;). Autophagy in filamentous fungi. Fungal Genet Biol46:1–8 [CrossRef][PubMed]
    [Google Scholar]
  28. Puttikamonkul S., Willger S. D., Grahl N., Perfect J. R., Movahed N., Bothner B., Park S., Paderu P., Perlin D. S., Cramer R. A. Jr. ( 2010;). Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus . Mol Microbiol77:891–911
    [Google Scholar]
  29. Raeder U., Broda P.. ( 1985;). Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol1:17–20 [CrossRef]
    [Google Scholar]
  30. Reumann S., Voitsekhovskaja O., Lillo C.. ( 2010;). From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma247:233–256 [CrossRef][PubMed]
    [Google Scholar]
  31. Roetzer A., Gratz N., Kovarik P., Schüller C.. ( 2010;). Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol12:199–216[PubMed][CrossRef]
    [Google Scholar]
  32. Suzuki K., Ohsumi Y.. ( 2007;). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae . FEBS Lett581:2156–2161 [CrossRef][PubMed]
    [Google Scholar]
  33. Tsukada M., Ohsumi Y.. ( 1993;). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae . FEBS Lett333:169–174[PubMed][CrossRef]
    [Google Scholar]
  34. Veneault-Fourrey C., Barooah M., Egan M., Wakley G., Talbot N. J.. ( 2006;). Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science312:580–583 [CrossRef][PubMed]
    [Google Scholar]
  35. Wanchoo A., Lewis M. W., Keyhani N. O.. ( 2009;). Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana . Microbiology155:3121–3133 [CrossRef][PubMed]
    [Google Scholar]
  36. Xiao G., Ying S. H., Zheng P., Wang Z. L., Zhang S., Xie X.-Q., Shang Y., St Leger R. J., Zhao G. P.. & other authors ( 2012;). Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana . Sci Rep2:483 [CrossRef][PubMed]
    [Google Scholar]
  37. Xie X. Q., Li F., Ying S. H., Feng M. G.. ( 2012;). Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana . PLoS ONE7:e30298 [CrossRef][PubMed]
    [Google Scholar]
  38. Ying S. H., Feng M. G.. ( 2006;). Novel blastospore-based transformation system for integration of phosphinothricin resistance and green fluorescence protein genes into Beauveria bassiana . Appl Microbiol Biotechnol72:206–210 [CrossRef][PubMed]
    [Google Scholar]
  39. Ying S. H., Feng M. G.. ( 2011;). A conidial protein (CP15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses. Appl Microbiol Biotechnol90:1711–1720 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhang S., Widemann E., Bernard G., Lesot A., Pinot F., Pedrini N., Keyhani N. O.. ( 2012;). CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana . J Biol Chem287:13477–13486 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062646-0
Loading
/content/journal/micro/10.1099/mic.0.062646-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error