1887

Abstract

, the causative agent of diphtheria, has been thoroughly studied with respect to toxin production and pili formation, while knowledge on host responses to infection is limited. In this study, we studied adhesion to and invasion of epithelial cells by different isolates. When NFκ-B reporter cell lines were used to monitor the effect of infection on human cells, strain-specific differences were observed. While adhesion to host cells had no effect, a correlation of invasion rate with NFκ-B induction was found, which indicates that internalization of bacteria is crucial for NFκ-B induction. Immunofluorescence microscopy experiments used to support the reporter assays showed that translocation of p65, as a hallmark of NFκ-B induction, was only observed in association with cell invasion by . Our data indicate that the response of epithelial cells to infection is determined by internalization of bacteria and that invasion of these cells is an active process; tetracycline-treated was still able to attach to host cells, but lost its ability to invade the cytoplasm. Recognition of pathogen-associated molecular patterns such as pili subunits by membrane-bound receptors facing the outside of the cell is not sufficient for NFκ-B induction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061879-0
2013-01-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/126.html?itemId=/content/journal/micro/10.1099/mic.0.061879-0&mimeType=html&fmt=ahah

References

  1. Bennett K. L., Pearson G. D.. ( 1993;). Sequence conversion during postreplicative adenovirus overlap recombination. Proc Natl Acad Sci U S A90:1397–1401 [CrossRef][PubMed]
    [Google Scholar]
  2. Bertuccini L., Baldassarri L., von Hunolstein C.. ( 2004;). Internalization of non-toxigenic Corynebacterium diphtheriae by cultured human respiratory epithelial cells. Microb Pathog37:111–118 [CrossRef][PubMed]
    [Google Scholar]
  3. Bose R., Thinwa J., Chaparro P., Zhong Y., Bose S., Zhong G., Dube P. H.. ( 2012;). Mitogen-activated protein kinase-dependent interleukin-1α intracrine signaling is modulated by YopP during Yersinia enterocolitica infection. Infect Immun80:289–297[PubMed][CrossRef]
    [Google Scholar]
  4. Colombo A. V., Hirata R. Jr, de Souza C. M., Monteiro-Leal L. H., Previato J. O., Formiga L. C. D., Andrade A. F. B., Mattos-Guaraldi A. L.. ( 2001;). Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett197:235–239 [CrossRef][PubMed]
    [Google Scholar]
  5. Corbett D., Wang J., Schuler S., Lopez-Castejon G., Glenn S., Brough D., Andrew P. W., Cavet J. S., Roberts I. S.. ( 2012;). Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Infect Immun80:14–21[PubMed][CrossRef]
    [Google Scholar]
  6. Corboz L., Thoma R., Braun U., Zbinden R.. ( 1996;). [Isolation of Corynebacterium diphtheriae subsp. belfanti from a cow with chronic active dermatitis]. Schweiz Arch Tierheilkd138:596–599[PubMed]
    [Google Scholar]
  7. dos Santos C. S., dos Santos L. S., de Souza M. C., dos Santos Dourado F., de Souza de Oliveira Dias A. A., Sabbadini P. S., Pereira G. A., Cabral M. C., Hirata Junior R., de Mattos-Guaraldi A. L.. ( 2010;). Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophages. Microbiol Immunol54:1–10 [CrossRef][PubMed]
    [Google Scholar]
  8. Farfour E., Badell E., Zasada A., Hotzel H., Tomaso H., Guillot S., Guiso N.. ( 2012;). Characterization and comparison of invasive Corynebacterium diphtheriae isolates from France and Poland. J Clin Microbiol50:173–175 [CrossRef][PubMed]
    [Google Scholar]
  9. Galazka A.. ( 2000;). The changing epidemiology of diphtheria in the vaccine era. J Infect Dis181:Suppl. 1S2–S9 [CrossRef][PubMed]
    [Google Scholar]
  10. Gey G. O., Coffmann W. D., Kubicek M. T.. ( 1952;). Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res12:264–265
    [Google Scholar]
  11. Grant S. G., Jessee J., Bloom F. R., Hanahan D.. ( 1990;). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A87:4645–4649 [CrossRef][PubMed]
    [Google Scholar]
  12. Hadfield T. L., McEvoy P., Polotsky Y., Tzinserling V. A., Yakovlev A. A.. ( 2000;). The pathology of diphtheria. J Infect Dis181:Suppl. 1S116–S120 [CrossRef][PubMed]
    [Google Scholar]
  13. Hall A. J., Cassiday P. K., Bernard K. A., Bolt F., Steigerwalt A. G., Bixler D., Pawloski L. C., Whitney A. M., Iwaki M.. & other authors ( 2010;). Novel Corynebacterium diphtheriae in domestic cats. Emerg Infect Dis16:688–691 [CrossRef][PubMed]
    [Google Scholar]
  14. Hansmeier N., Chao T. C., Kalinowski J., Pühler A., Tauch A.. ( 2006;). Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae . Proteomics6:2465–2476 [CrossRef][PubMed]
    [Google Scholar]
  15. Hayden M. S., West A. P., Ghosh S.. ( 2006;). NF-κB and the immune response. Oncogene25:6758–6780 [CrossRef][PubMed]
    [Google Scholar]
  16. Henricson B., Segarra M., Garvin J., Burns J., Jenkins S., Kim C., Popovic T., Golaz A., Akey B.. ( 2000;). Toxigenic Corynebacterium diphtheriae associated with an equine wound infection. J Vet Diagn Invest12:253–257 [CrossRef][PubMed]
    [Google Scholar]
  17. Hirata R. Jr, Napoleão F., Monteiro-Leal L. H., Andrade A. F. B., Nagao P. E., Formiga L. C. D., Fonseca L. S., Mattos-Guaraldi A. L.. ( 2002;). Intracellular viability of toxigenic Corynebacterium diphtheriae strains in HEp-2 cells. FEMS Microbiol Lett215:115–119 [CrossRef][PubMed]
    [Google Scholar]
  18. Hirata R. Jr, Souza S. M., Rocha-de-Souza C. M., Andrade A. F., Monteiro-Leal L. H., Formiga L. C., Mattos-Guaraldi A. L.. ( 2004;). Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog36:125–130 [CrossRef][PubMed]
    [Google Scholar]
  19. Hirata R. Jr, Pereira G. A., Filardy A. A., Gomes D. L., Damasco P. V., Rosa A. C., Nagao P. E., Pimenta F. P., Mattos-Guaraldi A. L.. ( 2008;). Potential pathogenic role of aggregative-adhering Corynebacterium diphtheriae of different clonal groups in endocarditis. Braz J Med Biol Res41:986–991 [CrossRef][PubMed]
    [Google Scholar]
  20. Leggett B. A., De Zoysa A., Abbott Y. E., Leonard N., Markey B., Efstratiou A.. ( 2010;). Toxigenic Corynebacterium diphtheriae isolated from a wound in a horse. Vet Rec166:656–657 [CrossRef][PubMed]
    [Google Scholar]
  21. Li Q., Verma I. M.. ( 2002;). NF-kappaB regulation in the immune system. Nat Rev Immunol2:725–734 [CrossRef][PubMed]
    [Google Scholar]
  22. Mandlik A., Swierczynski A., Das A., Ton-That H.. ( 2007;). Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol64:111–124 [CrossRef][PubMed]
    [Google Scholar]
  23. Mandlik A., Swierczynski A., Das A., Ton-That H.. ( 2008;). Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol16:33–40 [CrossRef][PubMed]
    [Google Scholar]
  24. Mattos-Guaraldi A. L., Duarte Formiga L. C., Pereira G. A.. ( 2000;). Cell surface components and adhesion in Corynebacterium diphtheriae . Microbes Infect2:1507–1512 [CrossRef][PubMed]
    [Google Scholar]
  25. O’Dea E., Hoffmann A.. ( 2009;). NF-κB signaling. Wiley Interdiscip Rev Syst Biol Med1:107–115 [CrossRef][PubMed]
    [Google Scholar]
  26. Ott L., Höller M., Gerlach R. G., Hensel M., Rheinlaender J., Schäffer T. E., Burkovski A.. ( 2010a;). Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol10:2 [CrossRef][PubMed]
    [Google Scholar]
  27. Ott L., Höller M., Rheinlaender J., Schäffer T. E., Hensel M., Burkovski A.. ( 2010b;). Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol10:257 [CrossRef][PubMed]
    [Google Scholar]
  28. Ott L., McKenzie A., Baltazar M. T., Britting S., Bischof A., Burkovski A., Hoskisson P. A.. ( 2012;). Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunol Med Microbiol65:413–421 [CrossRef][PubMed]
    [Google Scholar]
  29. Perkins N. D.. ( 2007;). Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol8:49–62 [CrossRef][PubMed]
    [Google Scholar]
  30. Peterson W. D. Jr, Stulberg C. S., Swanborg N. K., Robinson A. R.. ( 1968;). Glucose-6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-agar gel and cellulose acetate zymograms. Proc Soc Exp Biol Med128:772–776[PubMed][CrossRef]
    [Google Scholar]
  31. Puliti M., von Hunolstein C., Marangi M., Bistoni F., Tissi L.. ( 2006;). Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J Med Microbiol55:229–235 [CrossRef][PubMed]
    [Google Scholar]
  32. Revez J., Rossi M., Ellström P., de Haan C., Rautelin H., Hänninen M. L.. ( 2011;). Finnish Campylobacter jejuni strains of multilocus sequence type ST-22 complex have two lineages with different characteristics. PLoS ONE6:e26880 [CrossRef][PubMed]
    [Google Scholar]
  33. Rheinlaender J., Gräbner A., Ott L., Burkovski A., Schäffer T. E.. ( 2012;). Contour and persistence length of Corynebacterium diphtheriae pili by atomic force microscopy. Eur Biophys J41:561–570 [CrossRef][PubMed]
    [Google Scholar]
  34. Sabbadini P. S., Assis M. C., Trost E., Gomes D. L., Moreira L. O., Dos Santos C. S., Pereira G. A., Nagao P. E., Azevedo V. A.. & other authors ( 2012;). Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog52:165–176 [CrossRef][PubMed]
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Scherer W. F., Syverton J. T., Gey G. O.. ( 1953;). Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med97:695–710 [CrossRef][PubMed]
    [Google Scholar]
  37. Swaminathan A., Mandlik A., Swierczynski A., Gaspar A., Das A., Ton-That H.. ( 2007;). Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae . Mol Microbiol66:961–974 [CrossRef][PubMed]
    [Google Scholar]
  38. Tato C. M., Hunter C. A.. ( 2002;). Host-pathogen interactions: subversion and utilization of the NF-κB pathway during infection. Infect Immun70:3311–3317 [CrossRef][PubMed]
    [Google Scholar]
  39. von Hunolstein C., Alfarone G., Scopetti F., Pataracchia M., La Valle R., Franchi F., Pacciani L., Manera A., Giammanco A.. & other authors ( 2003;). Molecular epidemiology and characteristics of Corynebacterium diphtheriae and Corynebacterium ulcerans strains isolated in Italy during the 1990s. J Med Microbiol52:181–188 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061879-0
Loading
/content/journal/micro/10.1099/mic.0.061879-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error