1887

Abstract

The operon in comprises four genes, denoted and A mutation within the gene resulted in hypersensitivity to heavy metal stress, temperature stress, osmotic pressure stress and oxidative stress. This mutation also resulted in sensitivity to variations in pH and lowered expression of the operon under adverse extracellular conditions, as determined by quantitative real-time PCR (qRT-PCR). Additionally, virulence traits such as haemolytic activity, proteolysis, biofilm formation, and evasion from peritoneal fluid killing were substantially reduced in the Δ strain. Interestingly, mutated also caused a significant reduction in expression of virulence determinants and To be a successful pathogen, must effectively overcome these types of stresses that are encountered within the host. These data show that an strain lacking functional is stress hypersensitive and therefore less viable when introduced into hostile environments. For the first time, these studies have identified as a crucial and necessary component of stress and pathogenicity mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060749-0
2012-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2568.html?itemId=/content/journal/micro/10.1099/mic.0.060749-0&mimeType=html&fmt=ahah

References

  1. Baker J. , Sitthisak S. , Sengupta M. , Johnson M. , Jayaswal R. K. , Morrissey J. A. . ( 2010; ). Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. . Appl Environ Microbiol 76:, 150–160. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bhakdi S. , Tranum-Jensen J. . ( 1991; ). Alpha-toxin of Staphylococcus aureus . . Microbiol Rev 55:, 733–751.[PubMed]
    [Google Scholar]
  3. Cabiscol E. , Tamarit J. , Ros J. . ( 2000; ). Oxidative stress in bacteria and protein damage by reactive oxygen species. . Int Microbiol 3:, 3–8.[PubMed]
    [Google Scholar]
  4. Chastanet A. , Fert J. , Msadek T. . ( 2003; ). Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. . Mol Microbiol 47:, 1061–1073. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chatterjee I. , Becker P. , Grundmeier M. , Bischoff M. , Somerville G. A. , Peters G. , Sinha B. , Harraghy N. , Proctor R. A. , Herrmann M. . ( 2005; ). Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. . J Bacteriol 187:, 4488–4496. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chatterjee I. , Maisonneuve E. , Ezraty B. , Herrmann M. , Dukan S. . ( 2011; ). Staphylococcus aureus ClpC is involved in protection of carbon-metabolizing enzymes from carbonylation during stationary growth phase. . Int J Med Microbiol 301:, 341–346. [CrossRef] [PubMed]
    [Google Scholar]
  7. Clauditz A. , Resch A. , Wieland K. P. , Peschel A. , Götz F. . ( 2006; ). Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. . Infect Immun 74:, 4950–4953. [CrossRef] [PubMed]
    [Google Scholar]
  8. Clements M. O. , Foster S. J. . ( 1999; ). Stress resistance in Staphylococcus aureus . . Trends Microbiol 7:, 458–462. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cramton S. E. , Gerke C. , Schnell N. F. , Nichols W. W. , Götz F. . ( 1999; ). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. . Infect Immun 67:, 5427–5433.[PubMed]
    [Google Scholar]
  10. Derré I. , Rapoport G. , Msadek T. . ( 1999; ). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. . Mol Microbiol 31:, 117–131. [CrossRef] [PubMed]
    [Google Scholar]
  11. Donegan N. P. , Thompson E. T. , Fu Z. , Cheung A. L. . ( 2010; ). Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus . . J Bacteriol 192:, 1416–1422. [CrossRef] [PubMed]
    [Google Scholar]
  12. Elsholz A. K. , Michalik S. , Zühlke D. , Hecker M. , Gerth U. . ( 2010; ). CtsR, the Gram-positive master regulator of protein quality control, feels the heat. . EMBO J 29:, 3621–3629. [CrossRef] [PubMed]
    [Google Scholar]
  13. Elsholz A. K. , Hempel K. , Pöther D. C. , Becher D. , Hecker M. , Gerth U. . ( 2011; ). CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria. . Mol Microbiol 79:, 772–785. [CrossRef] [PubMed]
    [Google Scholar]
  14. Frees D. , Qazi S. N. A. , Hill P. J. , Ingmer H. . ( 2003; ). Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. . Mol Microbiol 48:, 1565–1578. [CrossRef] [PubMed]
    [Google Scholar]
  15. Frees D. , Chastanet A. , Qazi S. , Sørensen K. , Hill P. , Msadek T. , Ingmer H. . ( 2004; ). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . . Mol Microbiol 54:, 1445–1462. [CrossRef] [PubMed]
    [Google Scholar]
  16. Frees D. , Sørensen K. , Ingmer H. . ( 2005; ). Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. . Infect Immun 73:, 8100–8108. [CrossRef] [PubMed]
    [Google Scholar]
  17. Giraudo A. T. , Cheung A. L. , Nagel R. . ( 1997; ). The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level. . Arch Microbiol 168:, 53–58. [CrossRef] [PubMed]
    [Google Scholar]
  18. Horsburgh M. J. , Aish J. L. , White I. J. , Shaw L. , Lithgow J. K. , Foster S. J. . ( 2002; ). σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. . J Bacteriol 184:, 5457–5467. [CrossRef]
    [Google Scholar]
  19. Imlay J. A. , Chin S. M. , Linn S. . ( 1988; ). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro . . Science 240:, 640–642. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kirstein J. , Zühlke D. , Gerth U. , Turgay K. , Hecker M. . ( 2005; ). A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis . . EMBO J 24:, 3435–3445. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kirstein J. , Dougan D. A. , Gerth U. , Hecker M. , Turgay K. . ( 2007; ). The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. . EMBO J 26:, 2061–2070. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kreiswirth B. N. , Löfdahl S. , Betley M. J. , O’Reilly M. , Schlievert P. M. , Bergdoll M. S. , Novick R. P. . ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. . Nature 305:, 709–712. [CrossRef] [PubMed]
    [Google Scholar]
  23. Krüger E. , Witt E. , Ohlmeier S. , Hanschke R. , Hecker M. . ( 2000; ). The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. . J Bacteriol 182:, 3259–3265. [CrossRef] [PubMed]
    [Google Scholar]
  24. Krüger E. , Zühlke D. , Witt E. , Ludwig H. , Hecker M. . ( 2001; ). Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. . EMBO J 20:, 852–863. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lee C. Y. , Buranen S. L. , Ye Z.-H. . ( 1991; ). Construction of single-copy integration vectors for Staphylococcus aureus . . Gene 103:, 101–105. [CrossRef] [PubMed]
    [Google Scholar]
  26. Liebl A. L. , Martin L. B. . ( 2009; ). Simple quantification of blood and plasma antimicrobial capacity using spectrophotometry. . Funct Ecol 23:, 1091–1096.[CrossRef]
    [Google Scholar]
  27. Löfblom J. , Kronqvist N. , Uhlén M. , Ståhl S. , Wernérus H. . ( 2007; ). Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. . J Appl Microbiol 102:, 736–747. [CrossRef] [PubMed]
    [Google Scholar]
  28. Luong T. T. , Sau K. , Roux C. , Sau S. , Dunman P. M. , Lee C. Y. . ( 2011; ). Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain Newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS . . J Bacteriol 193:, 686–694. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mandell G. L. . ( 1975; ). Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal–leukocyte interaction. . J Clin Invest 55:, 561–566. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mead D. A. , Szczesna-Skorupa E. , Kemper B. . ( 1986; ). Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. . Protein Eng 1:, 67–74. [CrossRef] [PubMed]
    [Google Scholar]
  31. Michel A. , Agerer F. , Hauck C. R. , Herrmann M. , Ullrich J. , Hacker J. , Ohlsen K. . ( 2006; ). Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. . J Bacteriol 188:, 5783–5796. [CrossRef] [PubMed]
    [Google Scholar]
  32. Novick R. P. , Edelman I. , Lofdahl S. . ( 1986; ). Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. . J Mol Biol 192:, 209–220. [CrossRef] [PubMed]
    [Google Scholar]
  33. Porankiewicz J. , Wang J. , Clarke A. K. . ( 1999; ). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. . Mol Microbiol 32:, 449–458. [CrossRef] [PubMed]
    [Google Scholar]
  34. Repine J. E. , Fox R. B. , Berger E. M. . ( 1981; ). Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. . J Biol Chem 256:, 7094–7096.[PubMed]
    [Google Scholar]
  35. Singh V. K. , Utaida S. , Jackson L. S. , Jayaswal R. K. , Wilkinson B. J. , Chamberlain N. R. . ( 2007; ). Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus . . Microbiology 153:, 3162–3173. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sitthisak S. , Kitti T. , Boonyonying K. , Wozniak D. J. , Mongkolsuk S. , Jayaswal R. K. . ( 2012; ). McsA and the roles of metal-binding motif in Staphylococcus aureus . . FEMS Microbiol Lett 327:, 126–133. [CrossRef] [PubMed]
    [Google Scholar]
  37. Townsend D. E. , Wilkinson B. J. . ( 1992; ). Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation. . J Bacteriol 174:, 2702–2710.[PubMed]
    [Google Scholar]
  38. Xiong Y. Q. , Willard J. , Yeaman M. R. , Cheung A. L. , Bayer A. S. . ( 2006; ). Regulation of Staphylococcus aureus α-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. . J Infect Dis 194:, 1267–1275. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060749-0
Loading
/content/journal/micro/10.1099/mic.0.060749-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error