1887

Abstract

Every cyanobacterial species contains genes encoding site-2-protease (S2P) homologues. The studied prokaryotic S2P homologues play essential roles in regulating stress responses through intramembrane proteolysis of membrane-bound anti-sigma factors. Here, the gene encoding Slr0643, one of four S2P homologues in sp. PCC 6803, was insertionally disrupted to explore its physiological role. Only a partially segregated mutant was obtained, indicating the essentiality of the gene product for growth. A pivotal role of fully functional Slr0643 in acid acclimation was demonstrated by defective acid acclimation to pH 6.5 in the mutant and transient induction of in the wild-type after transfer from pH 7.5 to 6.5. DNA microarray and quantitative RT-PCR analyses of mutant and wild-type strains at pH 7.5 versus pH 6.5 identified genes involved in early acid acclimation and revealed genes expressed differentially due to disruption. Early acid acclimation to pH 6.5 in the wild-type strain included upregulation of , and and downregulation of and , as well as downregulation of porins and upregulation of inorganic carbon and nitrogen transporters. The inability of the mutant strain to survive at pH 6.5 was found to be related to defective photosynthesis and excess expression of NADH dehydrogenase, together with excessive upregulation of carbon transporter and repression of nitrogen transporter and metabolism genes. Most interestingly, analysis of microarray data revealed the close relationship between disruption and expression of the operon. Thus it is suggested that Slr0643/Sll0857/SigH might act through an S2P/anti-Sigma factor/Sigma factor mechanism to play a role in acid acclimation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060632-0
2012-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2765.html?itemId=/content/journal/micro/10.1099/mic.0.060632-0&mimeType=html&fmt=ahah

References

  1. Alba B. M., Leeds J. A., Onufryk C., Lu C. Z., Gross C. A.. ( 2002;). DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. . Genes Dev 16:, 2156–2168. [CrossRef][PubMed]
    [Google Scholar]
  2. Angermayr S. A., Hellingwerf K. J., Lindblad P., Teixeira de Mattos M. J.. ( 2009;). Energy biotechnology with cyanobacteria. . Curr Opin Biotechnol 20:, 257–263. [CrossRef][PubMed]
    [Google Scholar]
  3. Asayama M., Imamura S.. ( 2008;). Stringent promoter recognition and autoregulation by the group 3 σ-factor SigF in the cyanobacterium Synechocystis sp. strain PCC 6803. . Nucleic Acids Res 36:, 5297–5305. [CrossRef][PubMed]
    [Google Scholar]
  4. Bramkamp M., Weston L., Daniel R. A., Errington J.. ( 2006;). Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. . Mol Microbiol 62:, 580–591. [CrossRef][PubMed]
    [Google Scholar]
  5. Brown M. S., Goldstein J. L.. ( 1997;). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. . Cell 89:, 331–340. [CrossRef][PubMed]
    [Google Scholar]
  6. Brown M. S., Ye J., Rawson R. B., Goldstein J. L.. ( 2000;). Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. . Cell 100:, 391–398. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen G., Zhang X.. ( 2010;). New insights into S2P signaling cascades: regulation, variation, and conservation. . Protein Sci 19:, 2015–2030. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen G., Bi Y. R., Li N.. ( 2005;). EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. . Plant J 41:, 364–375. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen G., Law K., Ho P., Zhang X., Li N.. ( 2012;). EGY2, a chloroplast membrane metalloprotease, plays a role in hypocotyl elongation in Arabidopsis. . Mol Biol Rep 39:, 2147–2155. [CrossRef][PubMed]
    [Google Scholar]
  10. Frederiksen C. M., Aaboe M., Dyrskjøt L., Laurberg S., Wolf H., Ørntoft T. F., Kruhøffer M.. ( 2003;). Technical evaluation of cDNA microarrays. . APMIS Suppl (109), 96–101.[PubMed]
    [Google Scholar]
  11. García-Domínguez M., Muro-Pastor M. I., Reyes J. C., Florencio F. J.. ( 2000;). Light-dependent regulation of cyanobacterial phytochrome expression. . J Bacteriol 182:, 38–44. [CrossRef][PubMed]
    [Google Scholar]
  12. Gray M. W.. ( 1993;). Origin and evolution of organelle genomes. . Curr Opin Genet Dev 3:, 884–890. [CrossRef][PubMed]
    [Google Scholar]
  13. Guo D., Gao X., Li H., Zhang T., Chen G., Huang P., An L., Li N.. ( 2008;). EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls. . Plant Mol Biol 66:, 345–360. [CrossRef][PubMed]
    [Google Scholar]
  14. Hartmut K. L.. ( 1987;). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. . In Methods in Enzymology, vol. 148, pp. 350–382. Edited by Lester R. D... Packer:: Academic Press;.
    [Google Scholar]
  15. Heimann J. D.. ( 2002;). The extracytoplasmic function (ECF) sigma factors. . Adv Microb Physiol 46:, 47–110. [CrossRef][PubMed]
    [Google Scholar]
  16. Huang F., Fulda S., Hagemann M., Norling B.. ( 2006;). Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. . Proteomics 6:, 910–920. [CrossRef][PubMed]
    [Google Scholar]
  17. Imamura S., Asayama M.. ( 2009;). Sigma factors for cyanobacterial transcription. . Gene Regul Syst Bio 3:, 65–87.[PubMed]
    [Google Scholar]
  18. Ishii A., Hihara Y.. ( 2008;). An AbrB-like transcriptional regulator, Sll0822, is essential for the activation of nitrogen-regulated genes in Synechocystis sp. PCC 6803. . Plant Physiol 148:, 660–670. [CrossRef][PubMed]
    [Google Scholar]
  19. Kanehara K., Ito K., Akiyama Y.. ( 2002;). YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. . Genes Dev 16:, 2147–2155. [CrossRef][PubMed]
    [Google Scholar]
  20. King-Lyons N. D., Smith K. F., Connell T. D.. ( 2007;). Expression of hurP, a gene encoding a prospective site 2 protease, is essential for heme-dependent induction of bhuR in Bordetella bronchiseptica. . J Bacteriol 189:, 6266–6275. [CrossRef][PubMed]
    [Google Scholar]
  21. Kondo K., Ochiai Y., Katayama M., Ikeuchi M.. ( 2007;). The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. . Plant Physiol 144:, 1200–1210. [CrossRef][PubMed]
    [Google Scholar]
  22. Kwon J., Oh J., Park C., Cho K., Kim S. I., Kim S., Lee S., Bhak J., Norling B., Choi J. S.. ( 2010;). Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography-Fourier transform mass spectrometry. . J Chromatogr A 1217:, 285–293. [CrossRef][PubMed]
    [Google Scholar]
  23. Lemeille S., Geiselmann J., Latifi A.. ( 2005a;). Crosstalk regulation among group 2-sigma factors in Synechocystis PCC6803. . BMC Microbiol 5:, 18. [CrossRef][PubMed]
    [Google Scholar]
  24. Lemeille S., Latifi A., Geiselmann J.. ( 2005b;). Inferring the connectivity of a regulatory network from mRNA quantification in Synechocystis PCC6803. . Nucleic Acids Res 33:, 3381–3389. [CrossRef][PubMed]
    [Google Scholar]
  25. Lieman-Hurwitz J., Haimovich M., Shalev-Malul G., Ishii A., Hihara Y., Gaathon A., Lebendiker M., Kaplan A.. ( 2009;). A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression. . Environ Microbiol 11:, 927–936. [CrossRef][PubMed]
    [Google Scholar]
  26. Los D. A., Zorina A., Sinetova M., Kryazhov S., Mironov K., Zinchenko V. V.. ( 2010;). Stress sensors and signal transducers in cyanobacteria. . Sensors (Basel) 10:, 2386–2415. [CrossRef][PubMed]
    [Google Scholar]
  27. Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., Penny D.. ( 2002;). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. . Proc Natl Acad Sci U S A 99:, 12246–12251. [CrossRef][PubMed]
    [Google Scholar]
  28. Matsui M., Yoshimura T., Wakabayashi Y., Imamura S., Tanaka K., Takahashi H., Asayama M., Shirai M.. ( 2007;). Interference expression at levels of the transcript and protein among group 1, 2, and 3 sigma factor genes in a cyanobacterium. . Microbes Environ 22:, 32–43. [CrossRef]
    [Google Scholar]
  29. Murata N., Los D. A.. ( 2006;). Histidine kinase Hik33 is an important participant in cold- signal transduction in cyanobacteria. . Physiol Plant 126:, 17–27. [CrossRef]
    [Google Scholar]
  30. Ohta H., Shibata Y., Haseyama Y., Yoshino Y., Suzuki T., Kagasawa T., Kamei A., Ikeuchi M., Enami I.. ( 2005;). Identification of genes expressed in response to acid stress in Synechocystis sp. PCC 6803 using DNA microarrays. . Photosynth Res 84:, 225–230. [CrossRef][PubMed]
    [Google Scholar]
  31. Pollari M., Gunnelius L., Tuominen I., Ruotsalainen V., Tyystjärvi E., Salminen T., Tyystjärvi T.. ( 2008;). Characterization of single and double inactivation strains reveals new physiological roles for group 2 σ factors in the cyanobacterium Synechocystis sp. PCC 6803. . Plant Physiol 147:, 1994–2005. [CrossRef][PubMed]
    [Google Scholar]
  32. Pollari M., Ruotsalainen V., Rantamäki S., Tyystjärvi E., Tyystjärvi T.. ( 2009;). Simultaneous inactivation of sigma factors B and D interferes with light acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 191:, 3992–4001. [CrossRef][PubMed]
    [Google Scholar]
  33. Prakash J. S., Sinetova M., Zorina A., Kupriyanova E., Suzuki I., Murata N., Los D. A.. ( 2009;). DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. . Mol Biosyst 5:, 1904–1912. [CrossRef][PubMed]
    [Google Scholar]
  34. Psakis G., Mailliet J., Lang C., Teufel L., Essen L. O., Hughes J.. ( 2011;). Signaling kinetics of cyanobacterial phytochrome Cph1, a light regulated histidine kinase. . Biochemistry 50:, 6178–6188. [CrossRef][PubMed]
    [Google Scholar]
  35. Qin C., Zhang X., Chen G.. ( 2012;). [Characterization of metalloprotease of Slr0643 and Sll0862, the S2P homologs from Synechocystis sp. PCC6803]. . Wei Sheng Wu Xue Bao 52:, 130–135 (in Chinese).[PubMed]
    [Google Scholar]
  36. Qiu D., Eisinger V. M., Rowen D. W., Yu H. D.. ( 2007;). Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 104:, 8107–8112. [CrossRef][PubMed]
    [Google Scholar]
  37. Rowland J. G., Pang X., Suzuki I., Murata N., Simon W. J., Slabas A. R.. ( 2010;). Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC6803. . PLoS ONE 5:, e10511. [CrossRef][PubMed]
    [Google Scholar]
  38. Sakai J., Duncan E. A., Rawson R. B., Hua X. X., Brown M. S., Goldstein J. L.. ( 1996;). Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. . Cell 85:, 1037–1046. [CrossRef][PubMed]
    [Google Scholar]
  39. Sakuragi Y., Maeda H., Dellapenna D., Bryant D. A.. ( 2006;). α-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. . Plant Physiol 141:, 508–521. [CrossRef][PubMed]
    [Google Scholar]
  40. Sato S., Shimoda Y., Muraki A., Kohara M., Nakamura Y., Tabata S.. ( 2007;). A large-scale protein–protein interaction analysis in Synechocystis sp. PCC6803. . DNA Res 14:, 207–216. [CrossRef][PubMed]
    [Google Scholar]
  41. Schöbel S., Zellmeier S., Schumann W., Wiegert T.. ( 2004;). The Bacillus subtilis σW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. . Mol Microbiol 52:, 1091–1105. [CrossRef][PubMed]
    [Google Scholar]
  42. Schreiber U., Hormann H., Neubauer C., Klughammer C.. ( 1995;). Assessment of photosystem-II photochemical quantum yield by chlorophyll fluorescence quenching analysis. . Aust J Plant Physiol 22:, 209–220. [CrossRef]
    [Google Scholar]
  43. Shcolnick S., Summerfield T. C., Reytman L., Sherman L. A., Keren N.. ( 2009;). The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. . Plant Physiol 150:, 2045–2056. [CrossRef][PubMed]
    [Google Scholar]
  44. Singh A. K., McIntyre L. M., Sherman L. A.. ( 2003;). Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. . Plant Physiol 132:, 1825–1839. [CrossRef][PubMed]
    [Google Scholar]
  45. Singh A. K., Elvitigala T., Bhattacharyya-Pakrasi M., Aurora R., Ghosh B., Pakrasi H. B.. ( 2008;). Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. . Plant Physiol 148:, 467–478. [CrossRef][PubMed]
    [Google Scholar]
  46. Summerfield T. C., Sherman L. A.. ( 2007;). Role of sigma factors in controlling global gene expression in light/dark transitions in the cyanobacterium Synechocystis sp. strain PCC 6803. . J Bacteriol 189:, 7829–7840. [CrossRef][PubMed]
    [Google Scholar]
  47. Summerfield T. C., Sherman L. A.. ( 2008;). Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. . Appl Environ Microbiol 74:, 5276–5284. [CrossRef][PubMed]
    [Google Scholar]
  48. Tuominen I., Pollari M., Tyystjärvi E., Tyystjärvi T.. ( 2006;). The SigB σ factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803. . FEBS Lett 580:, 319–323. [CrossRef][PubMed]
    [Google Scholar]
  49. Wang X. D., Sato R., Brown M. S., Hua X. X., Goldstein J. L.. ( 1994;). SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. . Cell 77:, 53–62. [CrossRef][PubMed]
    [Google Scholar]
  50. Yeh K. C., Wu S. H., Murphy J. T., Lagarias J. C.. ( 1997;). A cyanobacterial phytochrome two-component light sensory system. . Science 277:, 1505–1508. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060632-0
Loading
/content/journal/micro/10.1099/mic.0.060632-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error