1887

Abstract

In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in sp. PCC 6803, () was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a -null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2–GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060038-0
2012-09-01
2020-11-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2440.html?itemId=/content/journal/micro/10.1099/mic.0.060038-0&mimeType=html&fmt=ahah

References

  1. Anderson S. L., McIntosh L.. ( 1991;). Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol173:2761–2767[PubMed]
    [Google Scholar]
  2. Blackwell M. F., Gounaris K., Zara S. J., Barber J.. ( 1987;). A method for estimating lateral diffusion coefficients in membranes from steady-state fluorescence quenching studies. Biophys J51:735–744 [CrossRef][PubMed]
    [Google Scholar]
  3. Blackwell M., Gibas C., Gygax S., Roman D., Wagner B.. ( 1994;). The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications. Biochim Biophys Acta1183:533–543 [CrossRef]
    [Google Scholar]
  4. Blankenship R. E.. ( 2002;). Molecular Mechanisms of Photosynthesis Oxford, London, Edinburgh, Malden, Carlton, Paris: Blackwell Science Ltd; [CrossRef]
    [Google Scholar]
  5. Castenholz R. W.. ( 2001;). Oxygenic photosynthetic bacteria. Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 1474–599 Boone D. R., Castenholz R. W.. New York, Berlin, Heidelberg: Springer-Verlag;
    [Google Scholar]
  6. DeRuyter Y. S., Fromme P.. ( 2008;). Molecular structure of the photosynthetic apparatus. The Cyanobacteria217–269 Herrero A., Flore E.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  7. Ehira S., Ohmori M., Sato N.. ( 2005;). Identification of low-temperature-regulated ORFs in the cyanobacterium Anabaena sp. strain PCC 7120: distinguishing the effects of low temperature from the effects of photosystem II excitation pressure. Plant Cell Physiol46:1237–1245 [CrossRef][PubMed]
    [Google Scholar]
  8. Elhai J., Wolk C. P.. ( 1988;). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene68:119–138 [CrossRef][PubMed]
    [Google Scholar]
  9. Fu J., Xu X.. ( 2006;). The functional divergence of two glgP homologues in Synechocystis sp. PCC 6803. FEMS Microbiol Lett260:201–209 [CrossRef][PubMed]
    [Google Scholar]
  10. Gao H., Xu X.. ( 2009;). Depletion of Vipp1 in Synechocystis sp. PCC 6803 affects photosynthetic activity before the loss of thylakoid membranes. FEMS Microbiol Lett292:63–70 [CrossRef][PubMed]
    [Google Scholar]
  11. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. ( 1989;). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61–68 [CrossRef][PubMed]
    [Google Scholar]
  12. Huang F., Parmryd I., Nilsson F., Persson A. L., Pakrasi H. B., Andersson B., Norling B.. ( 2002;). Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol Cell Proteomics1:956–966 [CrossRef][PubMed]
    [Google Scholar]
  13. Huang F., Hedman E., Funk C., Kieselbach T., Schröder W. P., Norling B.. ( 2004;). Isolation of outer membrane of Synechocystis sp. PCC 6803 and its proteomic characterization. Mol Cell Proteomics3:586–595 [CrossRef][PubMed]
    [Google Scholar]
  14. Jiang Z. Y., Woollard A. C., Wolff S. P.. ( 1991;). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids26:853–856 [CrossRef][PubMed]
    [Google Scholar]
  15. Kanervo E., Tasaka Y., Murata N., Aro E. M.. ( 1997;). Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol114:841–849 [CrossRef][PubMed]
    [Google Scholar]
  16. Kirchhoff H., Mukherjee U., Galla H.-J.. ( 2002;). Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry41:4872–4882 [CrossRef][PubMed]
    [Google Scholar]
  17. Kis M., Zsiros O., Farkas T., Wada H., Nagy F., Gombos Z.. ( 1998;). Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci U S A95:4209–4214 [CrossRef][PubMed]
    [Google Scholar]
  18. Kolber Z. S., Prášil O., Falkowski P. G.. ( 1998;). Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta1367:88–106 [CrossRef][PubMed]
    [Google Scholar]
  19. Kunert A., Hagemann M., Erdmann N.. ( 2000;). Construction of promoter probe vectors for Synechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB. J Microbiol Methods41:185–194 [CrossRef][PubMed]
    [Google Scholar]
  20. Liberton M., Pakrasi H. B.. ( 2008;). Membrane systems in cyanobacteria. The Cyanobacteria271–287 Herrero A., Flore E.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  21. Mackay S. P., O’Malley P. J.. ( 1993;). Molecular modelling of the interaction between DCMU and QB-binding site of photosystem II. Z Naturforsch C48:291–298[PubMed]
    [Google Scholar]
  22. Maruyama K., Sato N., Ohta N.. ( 1999;). Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res27:2029–2036 [CrossRef][PubMed]
    [Google Scholar]
  23. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S. I.. ( 2007;). Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta1767:414–421 [CrossRef][PubMed]
    [Google Scholar]
  24. Mustardy L., Los D. A., Gombos Z., Murata N.. ( 1996;). Immunocytochemical localization of acyl-lipid desaturases in cyanobacterial cells: evidence that both thylakoid membranes and cytoplasmic membranes are sites of lipid desaturation. Proc Natl Acad Sci U S A93:10524–10527 [CrossRef][PubMed]
    [Google Scholar]
  25. Norling B., Zak E., Andersson B., Pakrasi H.. ( 1998;). 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett436:189–192 [CrossRef][PubMed]
    [Google Scholar]
  26. Olive J., Ajlani G., Astier C., Recouvreur M., Vernotte C.. ( 1997;). Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim Biophys Acta1319:275–282 [CrossRef]
    [Google Scholar]
  27. Prakash J. S., Krishna P. S., Sirisha K., Kanesaki Y., Suzuki I., Shivaji S., Murata N.. ( 2010;). An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803. Microbiology156:442–451 [CrossRef][PubMed]
    [Google Scholar]
  28. Qiu B., Price N. M.. ( 2009;). Different physiological responses of four marine Synechococcus strains (Cyanophyceae) to nickel starvation under iron-replete and iron-deplete conditions. J Phycol45:1062–1071 [CrossRef]
    [Google Scholar]
  29. Sakamoto T., Bryant D. A.. ( 2002;). Synergistic effect of high-light and low temperature on cell growth of the Δ12 fatty acid desaturase mutant in Synechococcus sp. PCC 7002. Photosynth Res72:231–242 [CrossRef][PubMed]
    [Google Scholar]
  30. Sakamoto T., Murata N.. ( 2002;). Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol5:208–210 [CrossRef][PubMed]
    [Google Scholar]
  31. Sarcina M., Murata N., Tobin M. J., Mullineaux C. W.. ( 2003;). Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Lett553:295–298 [CrossRef][PubMed]
    [Google Scholar]
  32. Schultze M., Forberich B., Rexroth S., Dyczmons N. G., Roegner M., Appel J.. ( 2009;). Localization of cytochrome b 6 f complexes implies an incomplete respiratory chain in cytoplasmic membranes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta1787:1479–1485 [CrossRef][PubMed]
    [Google Scholar]
  33. Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N.. ( 2001;). Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol40:235–244 [CrossRef][PubMed]
    [Google Scholar]
  34. Tan X., Zhu T., Shen S., Yin C., Gao H., Xu X.. ( 2011;). Role of Rbp1 in the acquired chill-light tolerance of cyanobacteria. J Bacteriol193:2675–2683 [CrossRef][PubMed]
    [Google Scholar]
  35. Tang Q., Tan X., Xu X.. ( 2010;). Effects of a type-II RNA-binding protein on fatty acid composition in Synechocystis sp. PCC 6803. Chin Sci Bull55:2416–2421 [CrossRef]
    [Google Scholar]
  36. Vioque A.. ( 1992;). Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. Nucleic Acids Res20:6331–6337 [CrossRef][PubMed]
    [Google Scholar]
  37. Westermanni M., Neuschaefer-Rube O., Mörschel E., Wehrmeyer W.. ( 1999;). Trimeric photosystem I complexes exist in vivo in thylakoid membranes of the Synechocystis strain BO9201 and differ in absorption characteristics from monomeric photosystem I complexes. J Plant Physiol155:24–33 [CrossRef]
    [Google Scholar]
  38. Williams J. G. K.. ( 1988;). Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol167:766–778 [CrossRef]
    [Google Scholar]
  39. Yang Y., Yin C., Li W., Xu X.. ( 2008;). α-Tocopherol is essential for acquired chill-light tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol190:1554–1560 [CrossRef][PubMed]
    [Google Scholar]
  40. Yin C., Li W., Du Y., Kong R., Xu X.. ( 2007;). Identification of a gene, ccr-1 (sll1242), required for chill-light tolerance and growth at 15 °C in Synechocystis sp. PCC 6803. Microbiology153:1261–1267 [CrossRef][PubMed]
    [Google Scholar]
  41. Zak E., Pakrasi H. B.. ( 2000;). The BtpA protein stabilizes the reaction center proteins of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 at low temperature. Plant Physiol123:215–222 [CrossRef][PubMed]
    [Google Scholar]
  42. Zak E., Norling B., Andersson B., Pakrasi H. B.. ( 1999;). Subcellular localization of the BtpA protein in the cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem261:311–316 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhang W., Du Y., Khudyakov I., Fan Q., Gao H., Ning D., Wolk C. P., Xu X.. ( 2007;). A gene cluster that regulates both heterocyst differentiation and pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol66:1429–1443 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060038-0
Loading
/content/journal/micro/10.1099/mic.0.060038-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error