1887

Abstract

The gene coding for the oxygenase component, , of 4-aminobenzenesulfonate (4-ABS) 3,4-dioxygenase in sp. PBC was previously identified via transposon mutagenesis. Expression of wild-type restored the ability of the mutant to grow on 4-ABS. The inclusion of and , coding for a putative glutamine-synthetase-like protein and a plant-type ferredoxin, respectively, further improved the efficiency of 4-ABS degradation. Transcription analysis using the promoter probe plasmid showed that was expressed during growth on 4-ABS and 4-sulfocatechol. Heterologous expression of in led to the biotransformation of 4-ABS to a metabolite which shared a similar retention time and UV/vis profile with 4-sulfocatechol. The putative reductase gene was isolated via degenerate PCR and expression of and in led to maximal 4-ABS biotransformation. In , the deletion of completely eliminated dioxygenase activity while the deletion of or led to a decrease in dioxygenase activity. Phylogenetic analysis of SadB showed that it is closely related to the glutamine-synthetase-like proteins involved in the aniline degradation pathway. This is the first discovery, to our knowledge, of the functional genetic components for 4-ABS aromatic ring hydroxylation in the bacterial domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059550-0
2012-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1933.html?itemId=/content/journal/micro/10.1099/mic.0.059550-0&mimeType=html&fmt=ahah

References

  1. Berg C. M., Shaw K. J., Vender J., Borucka-Mankiewicz M.. ( 1979;). Physiological characterization of polar Tn5-induced isoleucine-valine auxotrophs in Escherichia coli K.12: evidence for an internal promoter in the ilvOGEDA operon. Genetics93:308–319[PubMed]
    [Google Scholar]
  2. Berg D. E., Weiss A., Crossland L.. ( 1980;). Polarity of Tn5 insertion mutations in Escherichia coli. J Bacteriol142:439–446[PubMed]
    [Google Scholar]
  3. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  4. Contzen M., Bürger S., Stolz A.. ( 2001;). Cloning of the genes for a 4-sulphocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulphocatechol. Mol Microbiol41:199–205 [CrossRef][PubMed]
    [Google Scholar]
  5. Feigel B. J., Knackmuss H. J.. ( 1988;). Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol Lett55:113–117 [CrossRef]
    [Google Scholar]
  6. Feigel B. J., Knackmuss H. J.. ( 1993;). Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol159:124–130 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Fukumori F., Saint C. P.. ( 1997;). Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). J Bacteriol179:399–408[PubMed]
    [Google Scholar]
  9. Gan H. M., Ibrahim Z., Shahir S., Yahya A.. ( 2011a;). Identification of genes involved in the 4-aminobenzenesulfonate degradation pathway of Hydrogenophaga sp. PBC via transposon mutagenesis. FEMS Microbiol Lett318:108–114 [CrossRef][PubMed]
    [Google Scholar]
  10. Gan H. M., Shahir S., Ibrahim Z., Yahya A.. ( 2011b;). Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant. Chemosphere82:507–513 [CrossRef][PubMed]
    [Google Scholar]
  11. Goldenring J. R., Batter D. K., Shaywitz B. A.. ( 1982;). Sulfanilic acid: behavioral change related to azo food dyes in developing rats. Neurobehav Toxicol Teratol4:43–49[PubMed]
    [Google Scholar]
  12. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  13. Halak S., Basta T., Bürger S., Contzen M., Stolz A.. ( 2006;). Characterization of the genes encoding the 3-carboxy-cis,cis-muconate-lactonizing enzymes from the 4-sulfocatechol degradative pathways of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. Microbiology152:3207–3216 [CrossRef][PubMed]
    [Google Scholar]
  14. Halak S., Basta T., Bürger S., Contzen M., Wray V., Pieper D. H., Stolz A.. ( 2007;). 4-sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. J Bacteriol189:6998–7006 [CrossRef][PubMed]
    [Google Scholar]
  15. Hammer A., Stolz A., Knackmuss H. J.. ( 1996;). Purification and characterization of a novel type of protocatechuate 3,4-dioxygenase with the ability to oxidize 4-sulfocatechol. Arch Microbiol166:92–100 [CrossRef][PubMed]
    [Google Scholar]
  16. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  17. Hwang S. Y., Berges D. A., Taggart J. J., Gilvarg C.. ( 1989;). Portage transport of sulfanilamide and sulfanilic acid. J Med Chem32:694–698 [CrossRef][PubMed]
    [Google Scholar]
  18. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  19. Liang Q., Takeo M., Chen M., Zhang W., Xu Y., Lin M.. ( 2005;). Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology151:3435–3446 [CrossRef][PubMed]
    [Google Scholar]
  20. Locher H. H., Thurnheer T., Leisinger T., Cook A. M.. ( 1989;). 3-nitrobenzenesulfonate, 3-aminobenzenesulfonate, and 4-aminobenzenesulfonate as sole carbon sources for bacteria. Appl Environ Microbiol55:492–494[PubMed]
    [Google Scholar]
  21. Magony M., Kákonyi I., Gara A., Rapali P., Perei K., Kovács K. L., Rákhely G.. ( 2007;). Overlaps between the various biodegradation pathways in Sphingomonas subarctica SA1. Acta Biol Hung58:Suppl.37–49 [CrossRef][PubMed]
    [Google Scholar]
  22. Mason J. R., Cammack R.. ( 1992;). The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol46:277–305 [CrossRef][PubMed]
    [Google Scholar]
  23. Miller W. G., Leveau J. H. J., Lindow S. E.. ( 2000;). Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact13:1243–1250 [CrossRef][PubMed]
    [Google Scholar]
  24. Murakami S., Hayashi T., Maeda T., Takenaka S., Aoki K.. ( 2003;). Cloning and functional analysis of aniline dioxygenase gene cluster, from Frateuria species ANA-18, that metabolizes aniline via an ortho-cleavage pathway of catechol. Biosci Biotechnol Biochem67:2351–2358 [CrossRef][PubMed]
    [Google Scholar]
  25. Nam J.-W., Nojiri H., Yoshida T., Habe H., Yamane H., Omori T.. ( 2001;). New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem65:254–263 [CrossRef][PubMed]
    [Google Scholar]
  26. Omori T., Matsubara M., Masuda S., Kodama T.. ( 1991;). Production of 4,5-dihydro-4,5-dihydroxyphthalate from phthalate by mutant strain of Pseudomonas testosteroni M4–1. Appl Microbiol Biotechnol35:431–435 [CrossRef]
    [Google Scholar]
  27. Park S.-H., Ko Y.-J., Kim C.-K.. ( 2001;). Toxic effects of catechol and 4-chlorobenzoate stresses on bacterial cells. J Microbiol39:206–212
    [Google Scholar]
  28. Parke D., D’Argenio D. A., Ornston L. N.. ( 2000;). Bacteria are not what they eat: that is why they are so diverse. J Bacteriol182:257–263 [CrossRef][PubMed]
    [Google Scholar]
  29. Perei K., Rákhely G., Kiss I., Polyák B., Kovács K. L.. ( 2001;). Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol55:101–107 [CrossRef][PubMed]
    [Google Scholar]
  30. Pérez-Pantoja D., Donoso R., Agulló L., Córdova M., Seeger M., Pieper D. H., Gonzalez B.. ( 2011;). Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol14:1091–1117 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Tan N. C. G., van Leeuwen A., van Voorthuizen E. M., Slenders P., Prenafeta-Boldú F. X., Temmink H., Lettinga G., Field J. A.. ( 2005;). Fate and biodegradability of sulfonated aromatic amines. Biodegradation16:527–537 [CrossRef][PubMed]
    [Google Scholar]
  34. Topaç F. O., Dindar E., Uçaroğlu S., Başkaya H. S.. ( 2009;). Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil. J Hazard Mater170:1006–1013 [CrossRef][PubMed]
    [Google Scholar]
  35. Urata M., Uchida E., Nojiri H., Omori T., Obo R., Miyaura N., Ouchiyama N.. ( 2004;). Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci Biotechnol Biochem68:2457–2465 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang Y. Q., Zhang J. S., Zhou J. T., Zhang Z. P.. ( 2009;). Biodegradation of 4-aminobenzenesulfonate by a novel Pannonibacter sp. W1 isolated from activated sludge. J Hazard Mater169:1163–1167 [CrossRef][PubMed]
    [Google Scholar]
  37. Zhuang R., Zhong W., Yao J., Chen H., Tian L., Zhou Y., Wang F., Bramanti E., Zaray G.. ( 2007;). Isolation and characterization of aniline-degrading Rhodococcus sp. strain AN5. J Environ Sci Health A42:2009–2016 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059550-0
Loading
/content/journal/micro/10.1099/mic.0.059550-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error